metadata
language: ja
thumbnail: https://github.com/rinnakk/japanese-pretrained-models/blob/master/rinna.png
tags:
- ja
- gpt_neox
- text-generation
- lm
- nlp
license: mit
datasets:
- Anthropic/hh-rlhf
- stanfordnlp/SHP
inference: false
japanese-gpt-neox-3.6b-instruction-sft
Overview
This repository provides a Japanese GPT-NeoX model of 3.6 billion parameters. The model is based on rinna/japanese-gpt-neox-3.6b
and has been finetuned to serve as a instruction-following conversational agent.
Model architecture
A 36-layer, 2816-hidden-size transformer-based language model.
Finetuning
The finetuning data is the subset of the following datasets and has been translated into Japanese.
The data will not be released.
Authors
I/O Format
A special format has been adopted to construct inputs.
- An input prompt is formatted as a conversation between
ユーザー
andシステム
. - Each input utterance consists of (1) its speaker (
"ユーザー"
or"システム"
), (2) a colon (":"
), (3) a whitespace (" "
), and (4) utterance text (e.g."世界で一番高い山は?"
). - The input prompt should be ended with
"システム: "
to acknowledge the model to generate a response. - Since the model's tokenizer does not recognize
"\n"
, a special newline symbol"<NL>"
is used instead. - All the newlines in input and output utterances should be replaced with
"<NL>"
. - All the utterances in the input prompt should be separated by
"<NL>"
.
Following is an example to construct an input from a conversation.
prompt = [
{
"speaker": "ユーザー",
"text": "日本のおすすめの観光地を教えてください。"
},
{
"speaker": "システム",
"text": "どの地域の観光地が知りたいですか?"
},
{
"speaker": "ユーザー",
"text": "渋谷の観光地を教えてください。"
}
]
prompt = [
f"{uttr['speaker']}: {uttr['text']}"
for uttr in prompt
]
prompt = "<NL>".join(prompt)
prompt = (
prompt
+ "<NL>"
+ "システム: "
)
print(prompt)
# "ユーザー: 日本のおすすめの観光地を教えてください。<NL>システム: どの地域の観光地が知りたいですか?<NL>ユーザー: 渋谷の観光地を教えてください。<NL>システム: "
How to use the model
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("rinna/japanese-gpt-neox-3.6b-instruction-sft", use_fast=False)
model = AutoModelForCausalLM.from_pretrained("rinna/japanese-gpt-neox-3.6b-instruction-sft")
if torch.cuda.is_available():
model = model.to("cuda")
token_ids = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
with torch.no_grad():
output_ids = model.generate(
token_ids.to(model.device),
do_sample=True,
max_new_tokens=128,
temperature=0.7,
pad_token_id=tokenizer.pad_token_id,
bos_token_id=tokenizer.bos_token_id,
eos_token_id=tokenizer.eos_token_id
)
output = tokenizer.decode(output_ids.tolist()[0][token_ids.size(1):])
output = output.replace("<NL>", "\n")
print(output)
"""分かりました。いくつかのおすすめを紹介します。
1. ハチ公像です。ハチ公像は、日本の観光スポットの1つとして人気があります。
2. スクランブル交差点です。多くの人々が行き交う大きな交差点で、観光客に人気のスポットです。
3. 109です。109は、ショッピングやエンターテイメント施設です。
4. 道玄坂です。道玄坂は、日本の商業地区である坂道です。</s>"""
Tokenization
The model uses a sentencepiece-based tokenizer.
- The tokenizer has a vocabulary size of 32,000.
- It uses sentencepiece's byte fallback feature to decompose unknown text pieces into UTF-8 byte pieces and to avoid producing
<UNK>
tokens. - sentencepiece's
--add_dummy_prefix
option was turned off so that a leading whitespace will not be prepended automatically.print(tokenizer.tokenize("吾輩は猫である")) # ['吾', '輩', 'は', '猫', 'である'] # instead of ['▁', '吾', '輩', 'は', '猫', 'である'] as in rinna/japanese-gpt-1b
- sentencepiece's
--remove_extra_whitespaces
option was turned off so that leading, trailing, and duplicate whitespaces are reserved.print(tokenizer.tokenize(" 吾輩は 猫である ")) # ['▁', '▁', '吾', '輩', 'は', '▁', '▁', '猫', 'である', '▁', '▁', '▁'] # instead of ['▁', '吾', '輩', 'は', '▁猫', 'である'] as in rinna/japanese-gpt-1b
- Don't forget to set
use_fast=False
to make the above features function correctly.good_tokenizer = AutoTokenizer.from_pretrained("rinna/japanese-gpt-neox-3.6b", use_fast=False) bad_tokenizer = AutoTokenizer.from_pretrained("rinna/japanese-gpt-neox-3.6b") print(good_tokenizer.decode(good_tokenizer.encode("გამარჯობა 吾輩は 猫である "))) # 'გამარჯობა 吾輩は 猫である </s>' print(bad_tokenizer.decode(bad_tokenizer.encode("გამარჯობა 吾輩は 猫である "))) # 'გამარ[UNK]ობა 吾輩は 猫である </s>'