youri-7b / README.md
keisawada's picture
Update README.md
5931fb8 verified
metadata
language:
  - ja
  - en
license: llama2
datasets:
  - mc4
  - wikipedia
  - EleutherAI/pile
  - oscar-corpus/colossal-oscar-1.0
  - cc100
thumbnail: https://github.com/rinnakk/japanese-pretrained-models/blob/master/rinna.png
inference: false
model-index:
  - name: youri-7b
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 49.06
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=rinna/youri-7b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 74.89
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=rinna/youri-7b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 42.22
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=rinna/youri-7b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 36.03
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=rinna/youri-7b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 71.82
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=rinna/youri-7b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 8.64
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=rinna/youri-7b
          name: Open LLM Leaderboard
base_model: meta-llama/Llama-2-7b-hf

rinna/youri-7b

rinna-icon

Overview

We conduct continual pre-training of llama2-7b on 40B tokens from a mixture of Japanese and English datasets. The continual pre-training significantly improves the model's performance on Japanese tasks.

The name youri comes from the Japanese word 妖狸/ようり/Youri, which is a kind of Japanese mythical creature (妖怪/ようかい/Youkai).


Benchmarking

Please refer to rinna's LM benchmark page.

How to use the model

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("rinna/youri-7b")
model = AutoModelForCausalLM.from_pretrained("rinna/youri-7b")

if torch.cuda.is_available():
    model = model.to("cuda")

text = "西田幾多郎は、"
token_ids = tokenizer.encode(text, add_special_tokens=False, return_tensors="pt")

with torch.no_grad():
    output_ids = model.generate(
        token_ids.to(model.device),
        max_new_tokens=200,
        min_new_tokens=200,
        do_sample=True,
        temperature=1.0,
        top_p=0.95,
        pad_token_id=tokenizer.pad_token_id,
        bos_token_id=tokenizer.bos_token_id,
        eos_token_id=tokenizer.eos_token_id
    )

output = tokenizer.decode(output_ids.tolist()[0])
print(output)
"""
西田幾多郎は、プラトンの復権を主張し、対する従来の西洋哲学は、近代の合理主義哲学に委ね、「従来の哲学は破 壊されてしまった」と述べている。 西田幾多郎は、西洋近代哲学の「徹底的な検討」を拒んだ。それは、「現代的理解の脆弱性を補う筈の、従来のヨーロッパに伝わる哲学的な方法では到底それができなかったからである」とい
"""

Tokenization

The model uses the original llama-2 tokenizer.


How to cite

@misc{rinna-youri-7b,
    title = {rinna/youri-7b},
    author = {Zhao, Tianyu and Kaga, Akio and Sawada, Kei},
    url = {https://huggingface.co/rinna/youri-7b}
}

@inproceedings{sawada2024release,
    title = {Release of Pre-Trained Models for the {J}apanese Language},
    author = {Sawada, Kei and Zhao, Tianyu and Shing, Makoto and Mitsui, Kentaro and Kaga, Akio and Hono, Yukiya and Wakatsuki, Toshiaki and Mitsuda, Koh},
    booktitle = {Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)},
    month = {5},
    year = {2024},
    pages = {13898--13905},
    url = {https://aclanthology.org/2024.lrec-main.1213},
    note = {\url{https://arxiv.org/abs/2404.01657}}
}

References

@software{gpt-neox-library,
    title = {{GPT}-{N}eo{X}: Large Scale Autoregressive Language Modeling in {P}y{T}orch},
    author = {Andonian, Alex and Anthony, Quentin and Biderman, Stella and Black, Sid and Gali, Preetham and Gao, Leo and Hallahan, Eric and Levy-Kramer, Josh and Leahy, Connor and Nestler, Lucas and Parker, Kip and Pieler, Michael and Purohit, Shivanshu and Songz, Tri and Phil, Wang and Weinbach, Samuel},
    doi = {10.5281/zenodo.5879544},
    month = {8},
    year = {2021},
    version = {0.0.1},
    url = {https://www.github.com/eleutherai/gpt-neox}
}

License

The llama2 license

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 47.11
AI2 Reasoning Challenge (25-Shot) 49.06
HellaSwag (10-Shot) 74.89
MMLU (5-Shot) 42.22
TruthfulQA (0-shot) 36.03
Winogrande (5-shot) 71.82
GSM8k (5-shot) 8.64