Edit model card

Llama3_8B_Task2_semantic_pred

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2767
  • Accuracy: 0.6493
  • Precision: 0.6493
  • Recall: 0.6493
  • F1 score: 0.6493

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Accuracy F1 score Precision Recall Validation Loss
0.49 0.5208 200 0.5750 0.5750 0.5750 0.5750 0.9015
0.439 1.0417 400 0.5541 0.5541 0.5541 0.5541 1.2361
0.2744 1.5625 600 0.7744 0.7744 0.7744 0.7744 0.4804
0.2621 2.0833 800 0.5658 0.5658 0.5658 0.5658 1.2460
0.1921 2.6042 1000 0.6102 0.6102 0.6102 0.6102 1.0217
0.1602 3.125 1200 0.5880 0.5880 0.5880 0.5880 1.3196
0.1736 3.6458 1400 0.5684 0.5684 0.5684 0.5684 1.7235
0.1628 4.1667 1600 0.6780 0.6780 0.6780 0.6780 1.0542
0.1204 4.6875 1800 1.2767 0.6493 0.6493 0.6493 0.6493

Framework versions

  • PEFT 0.11.1
  • Transformers 4.44.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
2
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for rishavranaut/Llama3_8B_Task2_semantic_pred

Adapter
(503)
this model