Edit model card

Baseline Model trained on model_tuning_mindalleeu83oz7r to apply classification on labels

Metrics of the best model:

accuracy 0.732672

recall_macro 0.630156

precision_macro 0.439732

f1_macro 0.455558

Name: LogisticRegression(C=0.1, class_weight='balanced', max_iter=1000), dtype: float64

See model plot below:

Pipeline(steps=[('easypreprocessor',EasyPreprocessor(types=                 continuous  dirty_float  ...  free_string  useless

temperatures False False ... False False superconditions True False ... False False is_megas False False ... False False feature_0 True False ... False False feature_1 True False ... False False ... ... ... ... ... ... feature_763 True False ... False False feature_764 True False ... False False feature_765 True False ... False False feature_766 True False ... False False feature_767 True False ... False False[771 rows x 7 columns])),('logisticregression',LogisticRegression(C=0.1, class_weight='balanced',max_iter=1000))])

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

Disclaimer: This model is trained with dabl library as a baseline, for better results, use AutoTrain.

Logs of training including the models tried in the process can be found in logs.txt

Downloads last month
0
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.