metadata
license: apache-2.0
base_model: facebook/dinov2-giant
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: dino_finetuned_giant_10_layers_thawed
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.7361218408564176
dino_finetuned_giant_10_layers_thawed
This model is a fine-tuned version of facebook/dinov2-giant on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 1.0387
- Accuracy: 0.7361
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 54
- eval_batch_size: 54
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 216
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
3.3778 | 0.3145 | 25 | 2.5161 | 0.3373 |
2.0106 | 0.6289 | 50 | 1.8874 | 0.4838 |
1.9 | 0.9434 | 75 | 1.6407 | 0.5441 |
1.2966 | 1.2579 | 100 | 1.4907 | 0.5930 |
1.3413 | 1.5723 | 125 | 1.3532 | 0.6358 |
1.2871 | 1.8868 | 150 | 1.2731 | 0.6547 |
0.7792 | 2.2013 | 175 | 1.1967 | 0.6875 |
0.7153 | 2.5157 | 200 | 1.1761 | 0.6966 |
0.7544 | 2.8302 | 225 | 1.1136 | 0.7096 |
0.465 | 3.1447 | 250 | 1.0962 | 0.7187 |
0.414 | 3.4591 | 275 | 1.0997 | 0.7274 |
0.4749 | 3.7736 | 300 | 1.0717 | 0.7291 |
0.4742 | 4.0881 | 325 | 1.0425 | 0.7323 |
0.3448 | 4.4025 | 350 | 1.0402 | 0.7392 |
0.3341 | 4.7170 | 375 | 1.0387 | 0.7361 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1