|
--- |
|
language: |
|
- en |
|
license: apache-2.0 |
|
library_name: peft |
|
tags: |
|
- mistral |
|
- generated_from_trainer |
|
- Transformers |
|
- text-generation-inference |
|
datasets: |
|
- robinsmits/ChatAlpaca-20K |
|
inference: false |
|
base_model: mistralai/Mistral-7B-Instruct-v0.2 |
|
model-index: |
|
- name: Mistral-Instruct-7B-v0.2-ChatAlpaca |
|
results: [] |
|
pipeline_tag: text-generation |
|
--- |
|
|
|
# Mistral-Instruct-7B-v0.2-ChatAlpaca |
|
|
|
## Model description |
|
|
|
This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on the English [robinsmits/ChatAlpaca-20K](https://www.huggingface.co/datasets/robinsmits/ChatAlpaca-20K) dataset. |
|
|
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.8584 |
|
|
|
## Model usage |
|
|
|
A basic example of how to use the finetuned model. Note this example is a modified version from the base model. |
|
|
|
``` |
|
import torch |
|
from peft import AutoPeftModelForCausalLM |
|
from transformers import AutoTokenizer |
|
|
|
device = "cuda" |
|
|
|
model = AutoPeftModelForCausalLM.from_pretrained("robinsmits/Mistral-Instruct-7B-v0.2-ChatAlpaca", |
|
device_map = "auto", |
|
load_in_4bit = True, |
|
torch_dtype = torch.bfloat16) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("robinsmits/Mistral-Instruct-7B-v0.2-ChatAlpaca") |
|
|
|
messages = [ |
|
{"role": "user", "content": "What is your favourite condiment?"}, |
|
{"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"}, |
|
{"role": "user", "content": "Do you have mayonnaise recipes?"} |
|
] |
|
|
|
encodeds = tokenizer.apply_chat_template(messages, return_tensors = "pt") |
|
|
|
generated_ids = model.generate(input_ids = encodeds.to(device), max_new_tokens = 512, do_sample = True) |
|
decoded = tokenizer.batch_decode(generated_ids) |
|
print(decoded[0]) |
|
``` |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 4e-05 |
|
- train_batch_size: 1 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 32 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_ratio: 0.05 |
|
- num_epochs: 2 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| 0.99 | 0.2 | 120 | 0.9355 | |
|
| 0.8793 | 0.39 | 240 | 0.8848 | |
|
| 0.8671 | 0.59 | 360 | 0.8737 | |
|
| 0.8662 | 0.78 | 480 | 0.8679 | |
|
| 0.8627 | 0.98 | 600 | 0.8639 | |
|
| 0.8426 | 1.18 | 720 | 0.8615 | |
|
| 0.8574 | 1.37 | 840 | 0.8598 | |
|
| 0.8473 | 1.57 | 960 | 0.8589 | |
|
| 0.8528 | 1.76 | 1080 | 0.8585 | |
|
| 0.852 | 1.96 | 1200 | 0.8584 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.7.1 |
|
- Transformers 4.36.2 |
|
- Pytorch 2.1.2+cu121 |
|
- Datasets 2.16.0 |
|
- Tokenizers 0.15.0 |