File size: 6,566 Bytes
ca04560
217293f
ca04560
217293f
 
 
 
 
 
 
e8981c1
217293f
bc6d654
ca04560
 
e0ffa30
ca04560
e0ffa30
ca04560
e0ffa30
ca04560
e0ffa30
ca04560
e0ffa30
ca04560
 
e0ffa30
ca04560
e0ffa30
ca04560
e0ffa30
 
 
ca04560
e0ffa30
 
ca04560
e0ffa30
 
 
ca04560
e0ffa30
ca04560
e0ffa30
ca04560
e0ffa30
 
 
ca04560
e0ffa30
 
 
 
 
 
ca04560
e0ffa30
ca04560
e0ffa30
 
 
 
 
 
 
 
ca04560
e0ffa30
ca04560
e0ffa30
ca04560
e0ffa30
ca04560
4a188d2
 
e0ffa30
 
 
 
 
 
 
 
 
 
ca04560
e0ffa30
ca04560
e0ffa30
ca04560
e0ffa30
 
 
 
 
 
 
 
 
 
 
ca04560
e0ffa30
ca04560
e0ffa30
 
 
 
 
 
 
 
 
 
 
 
ca04560
 
e0ffa30
ca04560
e0ffa30
 
 
 
6a49ef8
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
---
license: cc-by-nc-4.0
library_name: transformers
tags:
  - trl
  - dpo
  - conversational
language:
  - nl
datasets:
  - BramVanroy/ultra_feedback_dutch_cleaned
pipeline_tag: text-generation
inference: false
---

# Qwen1.5-7B-Dutch-Chat

## Model description

This DPO aligned model is the merged version of the adapter model [robinsmits/Qwen1.5-7B-Dutch-Chat-Dpo](robinsmits/Qwen1.5-7B-Dutch-Chat-Dpo). 

DPO Finetuning was performed on the Dutch [BramVanroy/ultra_feedback_dutch_cleaned](https://huggingface.co/datasets/BramVanroy/ultra_feedback_dutch_cleaned) dataset.

See [Qwen/Qwen1.5-7B-Chat](https://huggingface.co/Qwen/Qwen1.5-7B-Chat) for all information about the base model.


## Model usage

A basic example of how to use the finetuned model.

```
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

device = 'cuda'
model_name = 'robinsmits/Qwen1.5-7B-Dutch-Chat'

model = AutoModelForCausalLM.from_pretrained(model_name, 
                                             device_map = "auto", 
                                             torch_dtype = torch.bfloat16)

tokenizer = AutoTokenizer.from_pretrained(model_name)

messages = [{"role": "user", "content": "Hoi hoe gaat het ermee? Wat kun je me vertellen over appels?"}]

encoded_ids = tokenizer.apply_chat_template(messages, 
                                            add_generation_prompt = True,
                                            return_tensors = "pt")

generated_ids = model.generate(input_ids = encoded_ids.to(device), 
                               max_new_tokens = 256,
                               do_sample = True)
decoded = tokenizer.batch_decode(generated_ids)
print(decoded[0])
```

Below the chat template with the generated output.

```
<|im_start|>system
Je bent een behulpzame AI assistent<|im_end|>
<|im_start|>user
Hoi hoe gaat het ermee? Wat kun je me vertellen over appels?<|im_end|>
<|im_start|>assistant
Hallo! Appels zijn zo'n lekkere fruitsoort. Ze zijn zoet en knapperig, en je kunt ze koken, roosteren of zelfs in smoothies doen. Er zijn heel veel verschillende soorten appels, zoals de Fuji, Granny Smith en Gala. De appels die je meestal in de winkel koopt, komen van bomen die in het oosten van Noord-Amerika groeien.<|im_end|>
```

## Intended uses & limitations

More information needed

## Training and evaluation data

The training notebook is available at the following link: [Qwen1_5_7B_Dutch_Chat_DPO](https://github.com/RobinSmits/Dutch-LLMs/blob/main/Qwen1_5_7B_Dutch_Chat_DPO.ipynb)

It achieves the following results on the evaluation set:
- Loss: 0.2610
- Rewards/chosen: -0.7248
- Rewards/rejected: -2.6224
- Rewards/accuracies: 0.9170
- Rewards/margins: 1.8976
- Logps/rejected: -877.8102
- Logps/chosen: -783.4282
- Logits/rejected: -0.8110
- Logits/chosen: -0.7528

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 32
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 1

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.5503        | 0.1   | 30   | 0.4684          | -0.0439        | -0.6295          | 0.8919             | 0.5856          | -837.9513      | -769.8103    | -0.9335         | -0.8894       |
| 0.4178        | 0.2   | 60   | 0.3568          | -0.3713        | -1.4769          | 0.9015             | 1.1056          | -854.9000      | -776.3594    | -0.8768         | -0.8276       |
| 0.3264        | 0.29  | 90   | 0.3143          | -0.4893        | -1.8730          | 0.9151             | 1.3837          | -862.8228      | -778.7191    | -0.8428         | -0.7929       |
| 0.2999        | 0.39  | 120  | 0.2885          | -0.6832        | -2.3118          | 0.9151             | 1.6286          | -871.5981      | -782.5971    | -0.8260         | -0.7730       |
| 0.3454        | 0.49  | 150  | 0.2749          | -0.7239        | -2.4904          | 0.9189             | 1.7664          | -875.1693      | -783.4113    | -0.8235         | -0.7678       |
| 0.3354        | 0.59  | 180  | 0.2685          | -0.6775        | -2.4859          | 0.9170             | 1.8084          | -875.0795      | -782.4824    | -0.8130         | -0.7574       |
| 0.2848        | 0.68  | 210  | 0.2652          | -0.7157        | -2.5692          | 0.9131             | 1.8535          | -876.7465      | -783.2466    | -0.8157         | -0.7586       |
| 0.3437        | 0.78  | 240  | 0.2621          | -0.7233        | -2.6091          | 0.9151             | 1.8857          | -877.5430      | -783.3994    | -0.8138         | -0.7561       |
| 0.2655        | 0.88  | 270  | 0.2611          | -0.7183        | -2.6154          | 0.9151             | 1.8971          | -877.6708      | -783.2995    | -0.8106         | -0.7524       |
| 0.3442        | 0.98  | 300  | 0.2610          | -0.7248        | -2.6224          | 0.9170             | 1.8976          | -877.8102      | -783.4282    | -0.8110         | -0.7528       |


### Framework versions

- PEFT 0.9.0
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.17.1
- Tokenizers 0.15.2

## Citation
Thanks to the creators of Qwen1.5 for there great work!
```
@article{qwen,
  title={Qwen Technical Report},
  author={Jinze Bai and Shuai Bai and Yunfei Chu and Zeyu Cui and Kai Dang and Xiaodong Deng and Yang Fan and Wenbin Ge and Yu Han and Fei Huang and Binyuan Hui and Luo Ji and Mei Li and Junyang Lin and Runji Lin and Dayiheng Liu and Gao Liu and Chengqiang Lu and Keming Lu and Jianxin Ma and Rui Men and Xingzhang Ren and Xuancheng Ren and Chuanqi Tan and Sinan Tan and Jianhong Tu and Peng Wang and Shijie Wang and Wei Wang and Shengguang Wu and Benfeng Xu and Jin Xu and An Yang and Hao Yang and Jian Yang and Shusheng Yang and Yang Yao and Bowen Yu and Hongyi Yuan and Zheng Yuan and Jianwei Zhang and Xingxuan Zhang and Yichang Zhang and Zhenru Zhang and Chang Zhou and Jingren Zhou and Xiaohuan Zhou and Tianhang Zhu},
  journal={arXiv preprint arXiv:2309.16609},
  year={2023}
}
```