File size: 5,476 Bytes
ca04560
217293f
ca04560
217293f
 
 
 
 
 
 
 
 
bc6d654
ca04560
 
e0ffa30
ca04560
e0ffa30
ca04560
e0ffa30
ca04560
e0ffa30
ca04560
e0ffa30
ca04560
 
e0ffa30
ca04560
e0ffa30
ca04560
e0ffa30
 
 
ca04560
e0ffa30
 
ca04560
e0ffa30
 
 
ca04560
e0ffa30
ca04560
e0ffa30
ca04560
e0ffa30
 
 
ca04560
e0ffa30
 
 
 
 
 
ca04560
e0ffa30
ca04560
e0ffa30
 
 
 
 
 
 
 
ca04560
e0ffa30
ca04560
e0ffa30
ca04560
e0ffa30
ca04560
e0ffa30
 
 
 
 
 
 
 
 
 
ca04560
e0ffa30
ca04560
e0ffa30
ca04560
e0ffa30
 
 
 
 
 
 
 
 
 
 
ca04560
e0ffa30
ca04560
e0ffa30
 
 
 
 
 
 
 
 
 
 
 
ca04560
 
e0ffa30
ca04560
e0ffa30
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
---
license: cc-by-nc-4.0
library_name: transformers
tags:
  - trl
  - dpo
  - conversational
language:
  - nl
datasets:
  - BramVanroy/ultrachat_200k_dutch
pipeline_tag: text-generation
inference: false
---

# Qwen1.5-7B-Dutch-Chat

## Model description

This DPO aligned model is the merged version of the adapter model [robinsmits/Qwen1.5-7B-Dutch-Chat-Dpo](robinsmits/Qwen1.5-7B-Dutch-Chat-Dpo). 

DPO Finetuning was performed on the Dutch [BramVanroy/ultra_feedback_dutch_cleaned](https://huggingface.co/datasets/BramVanroy/ultra_feedback_dutch_cleaned) dataset.

See [Qwen/Qwen1.5-7B-Chat](https://huggingface.co/Qwen/Qwen1.5-7B-Chat) for all information about the base model.


## Model usage

A basic example of how to use the finetuned model.

```
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

device = 'cuda'
model_name = 'robinsmits/Qwen1.5-7B-Dutch-Chat'

model = AutoModelForCausalLM.from_pretrained(model_name, 
                                             device_map = "auto", 
                                             torch_dtype = torch.bfloat16)

tokenizer = AutoTokenizer.from_pretrained(model_name)

messages = [{"role": "user", "content": "Hoi hoe gaat het ermee? Wat kun je me vertellen over appels?"}]

encoded_ids = tokenizer.apply_chat_template(messages, 
                                            add_generation_prompt = True,
                                            return_tensors = "pt")

generated_ids = model.generate(input_ids = encoded_ids.to(device), 
                               max_new_tokens = 256,
                               do_sample = True)
decoded = tokenizer.batch_decode(generated_ids)
print(decoded[0])
```

Below the chat template with the generated output.

```
<|im_start|>system
Je bent een behulpzame AI assistent<|im_end|>
<|im_start|>user
Hoi hoe gaat het ermee? Wat kun je me vertellen over appels?<|im_end|>
<|im_start|>assistant
Hallo! Appels zijn zo'n lekkere fruitsoort. Ze zijn zoet en knapperig, en je kunt ze koken, roosteren of zelfs in smoothies doen. Er zijn heel veel verschillende soorten appels, zoals de Fuji, Granny Smith en Gala. De appels die je meestal in de winkel koopt, komen van bomen die in het oosten van Noord-Amerika groeien.<|im_end|>
```

## Intended uses & limitations

More information needed

## Training and evaluation data

It achieves the following results on the evaluation set:
- Loss: 0.2610
- Rewards/chosen: -0.7248
- Rewards/rejected: -2.6224
- Rewards/accuracies: 0.9170
- Rewards/margins: 1.8976
- Logps/rejected: -877.8102
- Logps/chosen: -783.4282
- Logits/rejected: -0.8110
- Logits/chosen: -0.7528

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 32
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 1

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.5503        | 0.1   | 30   | 0.4684          | -0.0439        | -0.6295          | 0.8919             | 0.5856          | -837.9513      | -769.8103    | -0.9335         | -0.8894       |
| 0.4178        | 0.2   | 60   | 0.3568          | -0.3713        | -1.4769          | 0.9015             | 1.1056          | -854.9000      | -776.3594    | -0.8768         | -0.8276       |
| 0.3264        | 0.29  | 90   | 0.3143          | -0.4893        | -1.8730          | 0.9151             | 1.3837          | -862.8228      | -778.7191    | -0.8428         | -0.7929       |
| 0.2999        | 0.39  | 120  | 0.2885          | -0.6832        | -2.3118          | 0.9151             | 1.6286          | -871.5981      | -782.5971    | -0.8260         | -0.7730       |
| 0.3454        | 0.49  | 150  | 0.2749          | -0.7239        | -2.4904          | 0.9189             | 1.7664          | -875.1693      | -783.4113    | -0.8235         | -0.7678       |
| 0.3354        | 0.59  | 180  | 0.2685          | -0.6775        | -2.4859          | 0.9170             | 1.8084          | -875.0795      | -782.4824    | -0.8130         | -0.7574       |
| 0.2848        | 0.68  | 210  | 0.2652          | -0.7157        | -2.5692          | 0.9131             | 1.8535          | -876.7465      | -783.2466    | -0.8157         | -0.7586       |
| 0.3437        | 0.78  | 240  | 0.2621          | -0.7233        | -2.6091          | 0.9151             | 1.8857          | -877.5430      | -783.3994    | -0.8138         | -0.7561       |
| 0.2655        | 0.88  | 270  | 0.2611          | -0.7183        | -2.6154          | 0.9151             | 1.8971          | -877.6708      | -783.2995    | -0.8106         | -0.7524       |
| 0.3442        | 0.98  | 300  | 0.2610          | -0.7248        | -2.6224          | 0.9170             | 1.8976          | -877.8102      | -783.4282    | -0.8110         | -0.7528       |


### Framework versions

- PEFT 0.9.0
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.17.1
- Tokenizers 0.15.2