Edit model card

You need to agree to share your contact information to access this model

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this model content.

Llama-3.2_sft

This model is a fine-tuned version of meta-llama/Llama-3.2-11B-Vision on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7029
  • Bleu: 0.3190
  • Rouge1: 0.6446
  • Rouge2: 0.3444
  • Rougel: 0.5512
  • Bertscore Precision: 0.8782
  • Bertscore Recall: 0.8935
  • Bertscore F1: 0.8858

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • num_epochs: 5.0

Training results

Training Loss Epoch Step Validation Loss Bleu Rouge1 Rouge2 Rougel Bertscore Precision Bertscore Recall Bertscore F1
1.7104 1.2403 100 1.7210 0.3168 0.6444 0.3460 0.5505 0.8774 0.8931 0.8852
1.677 2.4806 200 1.7063 0.3191 0.6462 0.3472 0.5524 0.8781 0.8935 0.8857
1.6343 3.7209 300 1.7020 0.3188 0.6448 0.3445 0.5513 0.8782 0.8934 0.8857
1.6163 4.9612 400 1.7029 0.3190 0.6446 0.3444 0.5512 0.8782 0.8935 0.8858

Framework versions

  • PEFT 0.13.2
  • Transformers 4.45.2
  • Pytorch 2.2.0a0+81ea7a4
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for rohitsaxena/Llama-3.2_sft

Adapter
(6)
this model