TinyStories-3M / README.md
leaderboard-pr-bot's picture
Adding Evaluation Results
31c05db
|
raw
history blame
1.31 kB

Model trained on the TinyStories Dataset, see https://arxiv.org/abs/2305.07759

------ EXAMPLE USAGE ---

from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig

model = AutoModelForCausalLM.from_pretrained('roneneldan/TinyStories-3M')

tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-125M")

prompt = "Once upon a time there was"

input_ids = tokenizer.encode(prompt, return_tensors="pt")

Generate completion

output = model.generate(input_ids, max_length = 1000, num_beams=1)

Decode the completion

output_text = tokenizer.decode(output[0], skip_special_tokens=True)

Print the generated text

print(output_text)

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 24.18
ARC (25-shot) 22.01
HellaSwag (10-shot) 25.58
MMLU (5-shot) 24.99
TruthfulQA (0-shot) 47.33
Winogrande (5-shot) 49.25
GSM8K (5-shot) 0.0
DROP (3-shot) 0.1