Check_Model_1 / README.md
rossevine's picture
update model card README.md
1c6d08a
metadata
license: apache-2.0
base_model: facebook/wav2vec2-large
tags:
  - generated_from_trainer
datasets:
  - common_voice
metrics:
  - wer
model-index:
  - name: Check_Model_1
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice
          type: common_voice
          config: id
          split: test
          args: id
        metrics:
          - name: Wer
            type: wer
            value: 0.37479022934924483

Check_Model_1

This model is a fine-tuned version of facebook/wav2vec2-large on the common_voice dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5522
  • Wer: 0.3748
  • Cer: 0.1158

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Wer Cer
2.1839 3.23 400 0.8796 0.7306 0.2332
0.6388 6.45 800 0.8702 0.6410 0.2200
0.4695 9.68 1200 0.7064 0.5360 0.1632
0.3659 12.9 1600 0.5814 0.5211 0.1662
0.285 16.13 2000 0.6394 0.5041 0.1663
0.2254 19.35 2400 0.5889 0.4428 0.1405
0.1801 22.58 2800 0.5712 0.4013 0.1182
0.1392 25.81 3200 0.5914 0.3934 0.1177
0.1051 29.03 3600 0.5522 0.3748 0.1158

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu117
  • Datasets 1.18.3
  • Tokenizers 0.13.3