|
--- |
|
license: apache-2.0 |
|
base_model: facebook/wav2vec2-large-xlsr-53 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- common_voice |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: Model_G_2 |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: common_voice |
|
type: common_voice |
|
config: id |
|
split: test |
|
args: id |
|
metrics: |
|
- name: Wer |
|
type: wer |
|
value: 0.9852694387469699 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Model_G_2 |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0359 |
|
- Wer: 0.9853 |
|
- Cer: 0.7143 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0003 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 30 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |
|
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:| |
|
| 3.8996 | 0.81 | 400 | 0.7268 | 1.0008 | 0.7672 | |
|
| 0.5216 | 1.61 | 800 | 0.2765 | 1.0171 | 0.7602 | |
|
| 0.3112 | 2.42 | 1200 | 0.1712 | 0.9965 | 0.7335 | |
|
| 0.2343 | 3.23 | 1600 | 0.1169 | 0.9984 | 0.7262 | |
|
| 0.1911 | 4.03 | 2000 | 0.0970 | 0.9970 | 0.7447 | |
|
| 0.1625 | 4.84 | 2400 | 0.0834 | 0.9941 | 0.7245 | |
|
| 0.1471 | 5.65 | 2800 | 0.0771 | 0.9936 | 0.7239 | |
|
| 0.1301 | 6.45 | 3200 | 0.0645 | 0.9940 | 0.7330 | |
|
| 0.1241 | 7.26 | 3600 | 0.0621 | 0.9912 | 0.7208 | |
|
| 0.1128 | 8.06 | 4000 | 0.0672 | 0.9892 | 0.7188 | |
|
| 0.1035 | 8.87 | 4400 | 0.0531 | 0.9895 | 0.7332 | |
|
| 0.0993 | 9.68 | 4800 | 0.0541 | 0.9912 | 0.7374 | |
|
| 0.0917 | 10.48 | 5200 | 0.0516 | 0.9883 | 0.7276 | |
|
| 0.0879 | 11.29 | 5600 | 0.0507 | 0.9841 | 0.7246 | |
|
| 0.0836 | 12.1 | 6000 | 0.0490 | 0.9858 | 0.7335 | |
|
| 0.0767 | 12.9 | 6400 | 0.0464 | 0.9844 | 0.7231 | |
|
| 0.0744 | 13.71 | 6800 | 0.0458 | 0.9855 | 0.7170 | |
|
| 0.0695 | 14.52 | 7200 | 0.0506 | 0.9893 | 0.7145 | |
|
| 0.0676 | 15.32 | 7600 | 0.0443 | 0.9892 | 0.7151 | |
|
| 0.0621 | 16.13 | 8000 | 0.0457 | 0.9831 | 0.7188 | |
|
| 0.0593 | 16.94 | 8400 | 0.0437 | 0.9905 | 0.7251 | |
|
| 0.0558 | 17.74 | 8800 | 0.0419 | 0.9881 | 0.7160 | |
|
| 0.0539 | 18.55 | 9200 | 0.0403 | 0.9897 | 0.7128 | |
|
| 0.0509 | 19.35 | 9600 | 0.0435 | 0.9853 | 0.7195 | |
|
| 0.0482 | 20.16 | 10000 | 0.0451 | 0.9863 | 0.7170 | |
|
| 0.0452 | 20.97 | 10400 | 0.0397 | 0.9874 | 0.7128 | |
|
| 0.0438 | 21.77 | 10800 | 0.0378 | 0.9874 | 0.7108 | |
|
| 0.0419 | 22.58 | 11200 | 0.0394 | 0.9881 | 0.7096 | |
|
| 0.0389 | 23.39 | 11600 | 0.0412 | 0.9874 | 0.7105 | |
|
| 0.0377 | 24.19 | 12000 | 0.0388 | 0.9847 | 0.7180 | |
|
| 0.0362 | 25.0 | 12400 | 0.0365 | 0.9848 | 0.7149 | |
|
| 0.0336 | 25.81 | 12800 | 0.0363 | 0.9840 | 0.7144 | |
|
| 0.0315 | 26.61 | 13200 | 0.0366 | 0.9855 | 0.7138 | |
|
| 0.031 | 27.42 | 13600 | 0.0381 | 0.9864 | 0.7171 | |
|
| 0.0303 | 28.23 | 14000 | 0.0363 | 0.9857 | 0.7145 | |
|
| 0.0276 | 29.03 | 14400 | 0.0365 | 0.9854 | 0.7136 | |
|
| 0.0282 | 29.84 | 14800 | 0.0359 | 0.9853 | 0.7143 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.31.0 |
|
- Pytorch 2.0.1+cu117 |
|
- Datasets 1.18.3 |
|
- Tokenizers 0.13.3 |
|
|