Model_G_2 / README.md
rossevine's picture
update model card README.md
f34c49b
|
raw
history blame
3.64 kB
metadata
license: apache-2.0
base_model: facebook/wav2vec2-large-xlsr-53
tags:
  - generated_from_trainer
datasets:
  - common_voice
metrics:
  - wer
model-index:
  - name: Model_G_2
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice
          type: common_voice
          config: id
          split: test
          args: id
        metrics:
          - name: Wer
            type: wer
            value: 0.9848965131456274

Model_G_2

This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the common_voice dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0374
  • Wer: 0.9849
  • Cer: 0.7098

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Wer Cer
3.6149 1.07 400 0.4672 1.0114 0.7588
0.4341 2.15 800 0.2008 0.9972 0.7369
0.2665 3.22 1200 0.1283 0.9986 0.7180
0.2114 4.3 1600 0.1016 0.9995 0.7135
0.1768 5.37 2000 0.0774 0.9950 0.7208
0.1531 6.44 2400 0.0682 0.9933 0.7137
0.1352 7.52 2800 0.0690 0.9883 0.7022
0.1252 8.59 3200 0.0656 0.9925 0.7091
0.1144 9.66 3600 0.0521 0.9888 0.7124
0.0986 10.74 4000 0.0527 0.9915 0.7067
0.0875 11.81 4400 0.0531 0.9902 0.7057
0.0883 12.89 4800 0.0488 0.9888 0.7136
0.0812 13.96 5200 0.0461 0.9884 0.7122
0.0721 15.03 5600 0.0474 0.9884 0.7128
0.0681 16.11 6000 0.0469 0.9869 0.7243
0.0671 17.18 6400 0.0450 0.9878 0.7086
0.0613 18.26 6800 0.0492 0.9852 0.7171
0.0573 19.33 7200 0.0435 0.9852 0.7209
0.0531 20.4 7600 0.0389 0.9908 0.7071
0.0493 21.48 8000 0.0423 0.9871 0.7166
0.0477 22.55 8400 0.0416 0.9843 0.7127
0.0441 23.62 8800 0.0372 0.9864 0.7075
0.0412 24.7 9200 0.0408 0.9857 0.7118
0.0392 25.77 9600 0.0407 0.9851 0.7152
0.0359 26.85 10000 0.0383 0.9861 0.7086
0.0347 27.92 10400 0.0373 0.9852 0.7066
0.0327 28.99 10800 0.0374 0.9849 0.7098

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu117
  • Datasets 1.18.3
  • Tokenizers 0.13.3