rossevine's picture
update model card README.md
7b3e1b4
|
raw
history blame
2.11 kB
metadata
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
  - generated_from_trainer
datasets:
  - common_voice
metrics:
  - wer
model-index:
  - name: Model_G_Wav2Vec2_Version3
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice
          type: common_voice
          config: id
          split: test
          args: id
        metrics:
          - name: Wer
            type: wer
            value: 0.3604325936975573

Model_G_Wav2Vec2_Version3

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4581
  • Wer: 0.3604
  • Cer: 0.0922

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Wer Cer
3.8299 5.97 400 0.7799 0.6921 0.1952
0.3573 11.94 800 0.4949 0.4799 0.1235
0.1567 17.91 1200 0.4528 0.4228 0.1092
0.1011 23.88 1600 0.4695 0.3877 0.0993
0.0707 29.85 2000 0.4581 0.3604 0.0922

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu117
  • Datasets 1.18.3
  • Tokenizers 0.13.3