Model_S_D_Wav2Vec2

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0464
  • Wer: 0.2319
  • Cer: 0.0598

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Wer Cer
3.5768 0.85 400 0.6152 0.5812 0.1905
0.3226 1.71 800 0.1026 0.3195 0.0722
0.1827 2.56 1200 0.0725 0.2048 0.0454
0.129 3.41 1600 0.0671 0.2393 0.0525
0.1075 4.26 2000 0.0556 0.2312 0.0497
0.0924 5.12 2400 0.0572 0.2040 0.0478
0.076 5.97 2800 0.0596 0.1472 0.0346
0.0695 6.82 3200 0.0608 0.2274 0.0510
0.0707 7.68 3600 0.0490 0.2665 0.0660
0.0597 8.53 4000 0.0509 0.2442 0.0593
0.0557 9.38 4400 0.0501 0.2533 0.0610
0.0503 10.23 4800 0.0519 0.2534 0.0622
0.0471 11.09 5200 0.0512 0.2585 0.0638
0.0417 11.94 5600 0.0497 0.2522 0.0610
0.0415 12.79 6000 0.0508 0.2547 0.0629
0.0372 13.65 6400 0.0497 0.2580 0.0643
0.0364 14.5 6800 0.0448 0.2498 0.0600
0.034 15.35 7200 0.0522 0.2419 0.0593
0.0306 16.2 7600 0.0510 0.2433 0.0560
0.0345 17.06 8000 0.0503 0.2610 0.0657
0.0266 17.91 8400 0.0462 0.2434 0.0620
0.0273 18.76 8800 0.0507 0.2456 0.0622
0.0216 19.62 9200 0.0466 0.2214 0.0531
0.0208 20.47 9600 0.0497 0.2396 0.0598
0.0201 21.32 10000 0.0470 0.2332 0.0559
0.0174 22.17 10400 0.0418 0.2346 0.0590
0.0198 23.03 10800 0.0472 0.2386 0.0602
0.0149 23.88 11200 0.0490 0.2446 0.0638
0.0133 24.73 11600 0.0497 0.2430 0.0632
0.0118 25.59 12000 0.0498 0.2368 0.0620
0.0106 26.44 12400 0.0453 0.2309 0.0590
0.0104 27.29 12800 0.0452 0.2296 0.0583
0.0085 28.14 13200 0.0467 0.2352 0.0604
0.0081 29.0 13600 0.0470 0.2310 0.0592
0.0079 29.85 14000 0.0464 0.2319 0.0598

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu117
  • Datasets 1.18.3
  • Tokenizers 0.13.3
Downloads last month
10
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for rossevine/Model_S_D_Wav2Vec2

Finetuned
(476)
this model