Edit model card

gemma-2b-prompt-dict_fix

This model is a fine-tuned version of google/gemma-2b on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4486

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0004
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • training_steps: 2000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
0.9304 0.38 100 1.1381
0.8056 0.75 200 1.0223
0.8532 1.13 300 0.9144
0.9387 1.5 400 0.8460
0.8744 1.88 500 0.7882
0.8939 2.26 600 0.7415
0.9265 2.63 700 0.7008
0.4869 3.01 800 0.6631
0.4609 3.38 900 0.6485
0.4909 3.76 1000 0.6063
0.5568 4.14 1100 0.5645
0.4727 4.51 1200 0.5412
0.5277 4.89 1300 0.5235
0.7115 5.26 1400 0.5122
0.5917 5.64 1500 0.4972
0.4643 6.02 1600 0.4777
0.275 6.39 1700 0.4750
0.4726 6.77 1800 0.4611
0.3297 7.14 1900 0.4496
0.3426 7.52 2000 0.4486

Framework versions

  • PEFT 0.9.0
  • Transformers 4.39.0.dev0
  • Pytorch 2.2.1+cu121
  • Datasets 2.17.1
  • Tokenizers 0.15.2
Downloads last month
2
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for rreit/gemma-2b-prompt-dict_fix

Base model

google/gemma-2b
Adapter
(23298)
this model