Edit model card

bert-finetuned-ner-optuna

This model is a fine-tuned version of bert-base-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6380
  • Precision: 0.2930
  • Recall: 0.2959
  • F1: 0.2944
  • Accuracy: 0.8208

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1.0447410202448447e-06
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1.634485341029132e-09
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 62 1.7624 0.0382 0.0134 0.0199 0.7006
No log 2.0 124 1.1267 0.0 0.0 0.0 0.7166
No log 3.0 186 0.9232 0.0155 0.0099 0.0121 0.7438
No log 4.0 248 0.8140 0.1012 0.0713 0.0837 0.7747
No log 5.0 310 0.7416 0.2075 0.1907 0.1987 0.7941
No log 6.0 372 0.6991 0.2582 0.2620 0.2601 0.8054
No log 7.0 434 0.6692 0.2809 0.2825 0.2817 0.8138
No log 8.0 496 0.6484 0.2905 0.2888 0.2897 0.8201
No log 9.0 558 0.6425 0.2861 0.2895 0.2878 0.8191
No log 10.0 620 0.6380 0.2930 0.2959 0.2944 0.8208

Framework versions

  • Transformers 4.34.1
  • Pytorch 2.1.0
  • Datasets 2.14.6
  • Tokenizers 0.14.1
Downloads last month
6
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for rubinho/bert-finetuned-ner-optuna

Finetuned
(1914)
this model