rukundob451's picture
End of training
645eedd verified
metadata
library_name: transformers
license: apache-2.0
base_model: microsoft/swin-tiny-patch4-window7-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: swin-tiny-patch4-window7-224-finetuned-papsmear
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8970588235294118

swin-tiny-patch4-window7-224-finetuned-papsmear

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3057
  • Accuracy: 0.8971

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.4898 0.9935 38 1.3709 0.4632
0.8902 1.9869 76 0.9261 0.6324
0.9107 2.9804 114 0.8400 0.6397
0.564 4.0 153 0.6937 0.7279
0.5563 4.9935 191 0.5622 0.7647
0.3851 5.9869 229 0.5238 0.8015
0.3327 6.9804 267 0.6382 0.7941
0.2469 8.0 306 0.4330 0.8456
0.2903 8.9935 344 0.4212 0.8309
0.1861 9.9869 382 0.4140 0.8529
0.1533 10.9804 420 0.3810 0.8603
0.1017 12.0 459 0.3565 0.8603
0.1285 12.9935 497 0.3057 0.8971
0.1377 13.9869 535 0.3058 0.8824
0.1033 14.9020 570 0.3140 0.8824

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.19.1