Meta-Llama 3.1 8B Text-to-SQL GPTQ Model
This repository provides a quantized 8-billion-parameter Meta-Llama model fine-tuned for text-to-SQL tasks. The model is optimized with GPTQ quantization for efficient inference. Below you'll find instructions to load, use, and fine-tune the model.
Model Details
- Model Size: 8B
- Quantization: GPTQ (4-bit)
- Languages Supported: English, Italian
- Task: Text-to-SQL generation
- License: Apache 2.0
Installation Requirements
Before using the model, ensure that you have the following dependencies installed. We recommend using the same versions to avoid any compatibility issues.
# Install the required PyTorch version with CUDA support (ensure CUDA 12.1 is installed)
!pip install torch==2.2.1 torchvision==0.17.1 torchaudio==2.2.1 --index-url https://download.pytorch.org/whl/cu121
# Install AutoGPTQ for quantized model handling
!pip install auto-gptq --no-build-isolation
# Install Optimum for model optimization
!pip install optimum
After installing the dependencies, reset your instance to ensure everything works correctly.
Loading the Model
To load the quantized Meta-Llama 3.1 model and use it for text-to-SQL tasks, use the following Python code:
from transformers import AutoTokenizer, pipeline
from auto_gptq import AutoGPTQForCausalLM
import torch
# Define the Alpaca-style prompt template
alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
{}
### Input:
{}
### Response:
"""
# Model directory and tokenizer
quantized_model_dir = "meta-llama-8b-quantized-4bit" # Path where quantized model is saved
tokenizer = AutoTokenizer.from_pretrained(quantized_model_dir)
# Load the quantized model
model = AutoGPTQForCausalLM.from_quantized(
quantized_model_dir,
device_map="auto", # Automatically map the model to the available device (GPU or CPU)
torch_dtype=torch.float16, # Ensure FP16 for efficiency
use_safetensors=True # If you saved the model using safetensors format, set this to True
)
# Set up the text generation pipeline without specifying the device
pipeline = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer
)
# Function to generate SQL query from input text using the Alpaca prompt
def generate_sql(input_text):
# Format the prompt
prompt = alpaca_prompt.format(
"Provide the SQL query",
input_text
)
# Generate the response using the pipeline
generated_text = pipeline(
prompt,
max_length=200,
eos_token_id=tokenizer.eos_token_id
)[0]["generated_text"]
# Clean the output by removing the prompt and any extra newlines
cleaned_output = generated_text.replace(prompt, '').strip()
return cleaned_output
# Example usage
italian_input = "Seleziona tutte le colonne della tabella table1 dove la colonna anni è uguale a 2020"
sql_query = generate_sql(italian_input)
print(sql_query)
Example Usage
The example script shows how to generate SQL queries from natural language text. Simply provide a request in Italian or English, and the model will generate an appropriate SQL query.
Example input:
italian_input = "Seleziona tutte le colonne della tabella table1 dove la colonna anni è uguale a 2020"
sql_query = generate_sql(italian_input)
print(sql_query)
Example output:
SELECT * FROM table1 WHERE anni = 2020;
Model Tags
- text-generation-inference
- transformers
- llama
- trl
- sft
License
This model is released under the Apache License 2.0.
- Downloads last month
- 8