|
--- |
|
license: apache-2.0 |
|
base_model: studio-ousia/luke-japanese-base-lite |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: out |
|
results: [] |
|
--- |
|
|
|
## Fine-tuning |
|
- this model was trained to classify whether input text comes from "chosen sentence" or "rejected sentence" |
|
- the probability (logits after passing softmax function) in last layer of this model can be used to quantify the preference from user input |
|
- fine-tuned [studio-ousia/mluke-large-lite](https://huggingface.co/studio-ousia/mluke-large-lite) via full parameter tuning using [open-preference-v0.3](https://huggingface.co/datasets/ryota39/open_preference-v0.3) |
|
- trained on bf16 format |
|
- Label 0 stands for rejected sentence |
|
- Label 1 stands for chosen sentence |
|
- **Note that this model can handle only 512 tokens in maximum** |
|
- **The limitation arises from Luke-based pre-trained model** |
|
|
|
## Metric |
|
|
|
- train and validation split |
|
|
|
|train loss|eval loss|accuracy|recall|precision|f1-score| |
|
|:---|:---|:---|:---|:---|:---| |
|
|0.1427|0.2009|9282|0.9383|0.9198|0.9290| |
|
|
|
- test split |
|
|
|
|accuracy|recall|precision|f1-score| |
|
|:---|:---|:---|:---| |
|
|0.9310|0.9199|0.9408|0.9302| |
|
|
|
- confusion matrix when test split |
|
|
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/651e3f30ca333f3c8df692b8/sWbpo0Hwp24SmcpvEtMlq.png) |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| |
|
| 0.316 | 1.0 | 1479 | 0.2245 | 0.9127 | 0.9027 | 0.9251 | 0.9138 | |
|
| 0.1696 | 2.0 | 2958 | 0.1869 | 0.9308 | 0.9234 | 0.9395 | 0.9314 | |
|
| 0.1427 | 3.0 | 4437 | 0.2009 | 0.9283 | 0.9198 | 0.9384 | 0.9290 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.42.3 |
|
- Pytorch 2.1.0+cu118 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |
|
|