s3nh's picture
Update README.md
02169d0
|
raw
history blame
2.39 kB
metadata
license: apache-2.0
library_name: peft
tags:
  - generated_from_trainer
base_model: mistralai/Mistral-7B-v0.1
model-index:
  - name: mistral-instruct
    results: []
datasets:
  - FreedomIntelligence/Evol-Instruct-Chinese-GPT4
language:
  - zh
  - en
pipeline_tag: text-generation

Built with Axolotl

mistral-instruct

This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9519

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
1.0979 0.0 1 1.0964
0.9735 0.25 82 0.9782
0.9577 0.5 164 0.9619
0.9281 0.75 246 0.9536
0.8988 1.0 328 0.9519

Framework versions

  • Transformers 4.37.0.dev0
  • Pytorch 2.1.2+cu121
  • Datasets 2.16.0
  • Tokenizers 0.15.0

Training procedure

The following bitsandbytes quantization config was used during training:

  • quant_method: bitsandbytes
  • load_in_8bit: False
  • load_in_4bit: True
  • llm_int8_threshold: 6.0
  • llm_int8_skip_modules: None
  • llm_int8_enable_fp32_cpu_offload: False
  • llm_int8_has_fp16_weight: False
  • bnb_4bit_quant_type: nf4
  • bnb_4bit_use_double_quant: True
  • bnb_4bit_compute_dtype: bfloat16

Framework versions

  • PEFT 0.6.0