metadata
license: bsd-3-clause
base_model: MIT/ast-finetuned-audioset-10-10-0.4593
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: GTZAN
type: marsyas/gtzan
config: all
split: train
args: all
metrics:
- name: Accuracy
type: accuracy
value: 0.91
ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan
This model is a fine-tuned version of MIT/ast-finetuned-audioset-10-10-0.4593 on the GTZAN dataset. It achieves the following results on the evaluation set:
- Loss: 0.3414
- Accuracy: 0.91
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 6
- total_train_batch_size: 24
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.6009 | 0.99 | 37 | 0.6286 | 0.8 |
0.2809 | 2.0 | 75 | 0.5013 | 0.85 |
0.0913 | 2.99 | 112 | 0.3566 | 0.88 |
0.0217 | 4.0 | 150 | 0.3274 | 0.89 |
0.0401 | 4.99 | 187 | 0.3379 | 0.91 |
0.0016 | 6.0 | 225 | 0.3839 | 0.9 |
0.0006 | 6.99 | 262 | 0.3449 | 0.9 |
0.0027 | 8.0 | 300 | 0.4207 | 0.9 |
0.0007 | 8.99 | 337 | 0.3600 | 0.92 |
0.0003 | 9.87 | 370 | 0.3414 | 0.91 |
Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3