Edit model card

Italian-Bert (Italian Bert) + POS πŸŽƒπŸ·

This model is a fine-tuned on xtreme udpos Italian version of Bert Base Italian for POS downstream task.

Details of the downstream task (POS) - Dataset

Dataset # Examples
Train 716 K
Dev 85 K
ADJ
ADP
ADV
AUX
CCONJ
DET
INTJ
NOUN
NUM
PART
PRON
PROPN
PUNCT
SCONJ
SYM
VERB
X

Metrics on evaluation set 🧾

Metric # score
F1 97.25
Precision 97.15
Recall 97.36

Model in action πŸ”¨

Example of usage

from transformers import pipeline

nlp_pos = pipeline(
    "ner",
    model="sachaarbonel/bert-italian-cased-finetuned-pos",
    tokenizer=(
        'sachaarbonel/bert-spanish-cased-finetuned-pos',  
        {"use_fast": False}
))


text = 'Roma Γ¨ la Capitale d'Italia.'

nlp_pos(text)
      
'''
Output:
--------
[{'entity': 'PROPN', 'index': 1, 'score': 0.9995346665382385, 'word': 'roma'},
 {'entity': 'AUX', 'index': 2, 'score': 0.9966597557067871, 'word': 'e'},
 {'entity': 'DET', 'index': 3, 'score': 0.9994786977767944, 'word': 'la'},
 {'entity': 'NOUN',
  'index': 4,
  'score': 0.9995198249816895,
  'word': 'capitale'},
 {'entity': 'ADP', 'index': 5, 'score': 0.9990894198417664, 'word': 'd'},
 {'entity': 'PART', 'index': 6, 'score': 0.57159024477005, 'word': "'"},
 {'entity': 'PROPN',
  'index': 7,
  'score': 0.9994804263114929,
  'word': 'italia'},
 {'entity': 'PUNCT', 'index': 8, 'score': 0.9772886633872986, 'word': '.'}]
'''

Yeah! Not too bad πŸŽ‰

Created by Sacha Arbonel/@sachaarbonel | LinkedIn

Made with β™₯ in Paris

Downloads last month
731
Safetensors
Model size
109M params
Tensor type
I64
Β·
F32
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train sachaarbonel/bert-italian-cased-finetuned-pos