SentenceTransformer based on BAAI/bge-base-en-v1.5
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sachin19566/bge-base-en-v1.5-udemy-fte")
# Run inference
sentences = [
'Multiply your returns using \'Value Investing",https://www.udemy.com/multiply-your-returns-using-value-investing/,true,20,1942,19,63,All Levels,4.5 hours,2015-07-23T00:08:33Z\n874284,Weekly Forex Analysis by Baraq FX"',
'All Levels',
'Business Finance',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 3,683 training samples
- Columns:
course_title
,level
, andsubject
- Approximate statistics based on the first 1000 samples:
course_title level subject type string string string details - min: 4 tokens
- mean: 11.02 tokens
- max: 81 tokens
- min: 4 tokens
- mean: 4.27 tokens
- max: 5 tokens
- min: 4 tokens
- mean: 4.0 tokens
- max: 4 tokens
- Samples:
course_title level subject Ultimate Investment Banking Course
All Levels
Business Finance
Complete GST Course & Certification - Grow Your CA Practice
All Levels
Business Finance
Financial Modeling for Business Analysts and Consultants
Intermediate Level
Business Finance
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
Unnamed Dataset
- Size: 100 evaluation samples
- Columns:
course_title
,level
, andsubject
- Approximate statistics based on the first 100 samples:
course_title level subject type string string string details - min: 4 tokens
- mean: 12.63 tokens
- max: 81 tokens
- min: 4 tokens
- mean: 4.42 tokens
- max: 5 tokens
- min: 4 tokens
- mean: 4.0 tokens
- max: 4 tokens
- Samples:
course_title level subject Learn to Use jQuery UI Widgets
Beginner Level
Web Development
Financial Statements: Learn Accounting. Unlock the Numbers.
Beginner Level
Business Finance
Trade Recap I - A Real Look at Futures Options Markets
Beginner Level
Business Finance
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16learning_rate
: 3e-06max_steps
: 932warmup_ratio
: 0.1fp16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 3e-06weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 3.0max_steps
: 932lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | loss |
---|---|---|---|
0.0866 | 20 | 2.2161 | 1.7831 |
0.1732 | 40 | 1.9601 | 1.5400 |
0.2597 | 60 | 1.6253 | 1.1987 |
0.3463 | 80 | 1.2393 | 1.0009 |
0.4329 | 100 | 1.1817 | 0.9073 |
0.5195 | 120 | 1.0667 | 0.8817 |
0.6061 | 140 | 1.258 | 0.8282 |
0.6926 | 160 | 1.2375 | 0.7618 |
0.7792 | 180 | 1.0925 | 0.7274 |
0.8658 | 200 | 1.0823 | 0.7101 |
0.9524 | 220 | 0.8789 | 0.7056 |
1.0390 | 240 | 0.9597 | 0.7107 |
1.1255 | 260 | 0.8427 | 0.7221 |
1.2121 | 280 | 0.8612 | 0.7287 |
1.2987 | 300 | 0.8428 | 0.7275 |
1.3853 | 320 | 0.6426 | 0.7451 |
1.4719 | 340 | 0.709 | 0.7642 |
1.5584 | 360 | 0.6602 | 0.7851 |
1.6450 | 380 | 0.7356 | 0.8244 |
1.7316 | 400 | 0.7633 | 0.8310 |
1.8182 | 420 | 0.9592 | 0.8185 |
1.9048 | 440 | 0.6715 | 0.8094 |
1.9913 | 460 | 0.7926 | 0.8103 |
2.0779 | 480 | 0.7703 | 0.8011 |
2.1645 | 500 | 0.6287 | 0.8266 |
2.2511 | 520 | 0.5481 | 0.8536 |
2.3377 | 540 | 0.7101 | 0.8679 |
2.4242 | 560 | 0.423 | 0.9025 |
2.5108 | 580 | 0.6814 | 0.9197 |
2.5974 | 600 | 0.5879 | 0.9492 |
2.6840 | 620 | 0.537 | 0.9861 |
2.7706 | 640 | 0.5107 | 1.0179 |
2.8571 | 660 | 0.6164 | 1.0413 |
2.9437 | 680 | 0.6582 | 1.0710 |
3.0303 | 700 | 0.4553 | 1.1001 |
3.1169 | 720 | 0.3649 | 1.1416 |
3.2035 | 740 | 0.9273 | 1.1142 |
3.2900 | 760 | 0.8816 | 1.0694 |
3.3766 | 780 | 0.7005 | 1.0481 |
3.4632 | 800 | 1.9002 | 1.0289 |
3.5498 | 820 | 1.4467 | 1.0141 |
3.6364 | 840 | 1.5564 | 1.0023 |
3.7229 | 860 | 1.2316 | 0.9961 |
3.8095 | 880 | 1.0549 | 0.9931 |
3.8961 | 900 | 1.2359 | 0.9913 |
3.9827 | 920 | 1.3568 | 0.9897 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.0
- Transformers: 4.44.2
- PyTorch: 2.4.0+cu121
- Accelerate: 0.33.0
- Datasets: 3.0.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 7
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for sachin19566/bge-base-en-v1.5-udemy-fte
Base model
BAAI/bge-base-en-v1.5