|
--- |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: deberta-v3-large-harmfulness |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# deberta-v3-large-harmfulness |
|
|
|
This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.1439 |
|
- Mse: 1.1439 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: constant |
|
- num_epochs: 1.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Mse | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:| |
|
| 2.1055 | 0.06 | 50 | 1.7626 | 1.7626 | |
|
| 1.6818 | 0.12 | 100 | 1.4659 | 1.4659 | |
|
| 1.4062 | 0.18 | 150 | 1.6323 | 1.6323 | |
|
| 1.4777 | 0.24 | 200 | 1.3776 | 1.3776 | |
|
| 1.4106 | 0.3 | 250 | 1.3044 | 1.3044 | |
|
| 1.2702 | 0.37 | 300 | 1.3792 | 1.3792 | |
|
| 1.4448 | 0.43 | 350 | 1.3048 | 1.3048 | |
|
| 1.3582 | 0.49 | 400 | 1.2485 | 1.2485 | |
|
| 1.2357 | 0.55 | 450 | 1.3709 | 1.3709 | |
|
| 1.1075 | 0.61 | 500 | 1.2538 | 1.2538 | |
|
| 1.2406 | 0.67 | 550 | 1.1996 | 1.1996 | |
|
| 1.2309 | 0.73 | 600 | 1.2671 | 1.2671 | |
|
| 1.194 | 0.79 | 650 | 1.4326 | 1.4326 | |
|
| 1.2135 | 0.85 | 700 | 1.1763 | 1.1763 | |
|
| 1.2196 | 0.91 | 750 | 1.1439 | 1.1439 | |
|
| 1.1983 | 0.97 | 800 | 1.1711 | 1.1711 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.30.1 |
|
- Pytorch 2.0.1+cu117 |
|
- Datasets 2.12.0 |
|
- Tokenizers 0.13.3 |
|
|