saileshaman's picture
End of training
f1bac8e
metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - generated_from_trainer
datasets:
  - image_folder
metrics:
  - accuracy
model-index:
  - name: vit-base-patch16-224-in21k-finetuned-cxr
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: image_folder
          type: image_folder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9356966199505359

vit-base-patch16-224-in21k-finetuned-cxr

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the image_folder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1758
  • Accuracy: 0.9357

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.2994 0.99 85 0.3337 0.8854
0.2806 2.0 171 0.2670 0.9101
0.2519 2.99 256 0.2495 0.9134
0.2456 4.0 342 0.2450 0.9143
0.2094 4.99 427 0.2105 0.9258
0.1808 6.0 513 0.1984 0.9308
0.1959 6.99 598 0.2022 0.9258
0.179 8.0 684 0.1980 0.9299
0.1915 8.99 769 0.1889 0.9308
0.1735 10.0 855 0.1931 0.9324
0.174 10.99 940 0.1872 0.9324
0.167 12.0 1026 0.1758 0.9357
0.1408 12.99 1111 0.1890 0.9349
0.1442 14.0 1197 0.1849 0.9324
0.1661 14.91 1275 0.1879 0.9266

Framework versions

  • Transformers 4.36.0
  • Pytorch 2.0.0
  • Datasets 2.1.0
  • Tokenizers 0.15.0