|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- precision |
|
- recall |
|
base_model: CAMeL-Lab/bert-base-arabic-camelbert-ca |
|
model-index: |
|
- name: POEMS-CAMELBERT-CA-RUN4 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# POEMS-CAMELBERT-CA-RUN4 |
|
|
|
This model is a fine-tuned version of [CAMeL-Lab/bert-base-arabic-camelbert-ca](https://huggingface.co/CAMeL-Lab/bert-base-arabic-camelbert-ca) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.1498 |
|
- Accuracy: 0.5966 |
|
- F1: 0.5966 |
|
- Precision: 0.5966 |
|
- Recall: 0.5966 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| |
|
| 1.3444 | 1.0 | 472 | 1.2277 | 0.4552 | 0.4552 | 0.4552 | 0.4552 | |
|
| 1.1589 | 2.0 | 944 | 1.0866 | 0.5275 | 0.5275 | 0.5275 | 0.5275 | |
|
| 1.0829 | 3.0 | 1416 | 1.1405 | 0.5146 | 0.5146 | 0.5146 | 0.5146 | |
|
| 1.0 | 4.0 | 1888 | 1.0262 | 0.5643 | 0.5643 | 0.5643 | 0.5643 | |
|
| 0.9288 | 5.0 | 2360 | 1.0574 | 0.5762 | 0.5762 | 0.5762 | 0.5762 | |
|
| 0.8776 | 6.0 | 2832 | 1.0456 | 0.5838 | 0.5838 | 0.5838 | 0.5838 | |
|
| 0.8166 | 7.0 | 3304 | 1.1421 | 0.5745 | 0.5745 | 0.5745 | 0.5745 | |
|
| 0.7636 | 8.0 | 3776 | 1.0959 | 0.5931 | 0.5931 | 0.5931 | 0.5931 | |
|
| 0.7173 | 9.0 | 4248 | 1.1400 | 0.5851 | 0.5851 | 0.5851 | 0.5851 | |
|
| 0.6915 | 10.0 | 4720 | 1.1498 | 0.5966 | 0.5966 | 0.5966 | 0.5966 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.38.2 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |
|
|