Edit model card

Built with Axolotl

See axolotl config

axolotl version: 0.4.0

# Qwen/Qwen1.5-7B

base_model: Qwen/Qwen1.5-7B
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer

# is_qwen_derived_model: true
trust_remote_code: true

load_in_8bit: false
load_in_4bit: true
strict: false

datasets:
  - path: OdiaGenAIdata/culturax-odia
    type: completion
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./lora-out-qwen-7b-odia
hub_model_id: sam2ai/qwen_1.5_odia_7b

sequence_len: 2048  # supports up to 8192
sample_packing: false
pad_to_sequence_len:

adapter: qlora
lora_model_dir:
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:

wandb_project: Qwen-completion-7b-odia
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 2
micro_batch_size: 1
num_epochs: 10
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: false
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention:

warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_table_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:

qwen_1.5_odia_7b

This model is a fine-tuned version of Qwen/Qwen1.5-7B on the None dataset. It achieves the following results on the evaluation set:

  • Loss: nan

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • total_eval_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss
0.8734 0.0 1 nan
0.377 0.25 5463 nan
0.3727 0.5 10926 nan
0.3894 0.75 16389 nan
0.3933 1.0 21852 nan
0.3542 1.25 27315 nan
0.3567 1.5 32778 nan
0.3557 1.75 38241 nan
0.3414 2.0 43704 nan
0.3261 2.25 49167 nan
0.3813 2.5 54630 nan
0.3607 2.75 60093 nan
0.3348 3.0 65556 nan
0.3464 3.25 71019 nan
0.3545 3.5 76482 nan
0.2719 3.75 81945 nan
0.3158 4.0 87408 nan
0.3119 4.25 92871 nan
0.3311 4.5 98334 nan
0.3335 4.75 103797 nan
0.3399 5.0 109260 nan
0.3247 5.25 114723 nan
0.3166 5.5 120186 nan
0.3366 5.75 125649 nan
0.3478 6.0 131112 nan
0.2852 6.25 136575 nan
0.2852 6.5 142038 nan
0.2601 6.75 147501 nan
0.2734 7.0 152964 nan
0.2983 7.25 158427 nan
0.2068 7.5 163890 nan
0.2355 7.75 169353 nan
0.2836 8.0 174816 nan
0.2263 8.25 180279 nan
0.2953 8.5 185742 nan
0.257 8.75 191205 nan
0.2484 9.0 196668 nan
0.2477 9.25 202131 nan
0.2641 9.5 207594 nan
0.2569 9.75 213057 nan
0.2846 10.0 218520 nan

Framework versions

  • PEFT 0.8.2
  • Transformers 4.37.0
  • Pytorch 2.0.1+gita61a294
  • Datasets 2.16.1
  • Tokenizers 0.15.0
Downloads last month
3
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for sam2ai/qwen_1.5_odia_7b

Base model

Qwen/Qwen1.5-7B
Adapter
(6140)
this model