metadata
base_model: google-t5/t5-base
datasets:
- Andyrasika/TweetSumm-tuned
library_name: peft
license: apache-2.0
metrics:
- rouge
- f1
- precision
- recall
tags:
- generated_from_trainer
model-index:
- name: t5-base-ia3-finetune-tweetsumm-1724827331
results:
- task:
type: summarization
name: Summarization
dataset:
name: Andyrasika/TweetSumm-tuned
type: Andyrasika/TweetSumm-tuned
metrics:
- type: rouge
value: 0.4407
name: Rouge1
- type: f1
value: 0.8906
name: F1
- type: precision
value: 0.8894
name: Precision
- type: recall
value: 0.8921
name: Recall
t5-base-ia3-finetune-tweetsumm-1724827331
This model is a fine-tuned version of google-t5/t5-base on the Andyrasika/TweetSumm-tuned dataset. It achieves the following results on the evaluation set:
- Loss: 1.8276
- Rouge1: 0.4407
- Rouge2: 0.1997
- Rougel: 0.3672
- Rougelsum: 0.4075
- Gen Len: 49.5727
- F1: 0.8906
- Precision: 0.8894
- Recall: 0.8921
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | F1 | Precision | Recall |
---|---|---|---|---|---|---|---|---|---|---|---|
2.2511 | 1.0 | 879 | 1.9364 | 0.4398 | 0.1855 | 0.3668 | 0.411 | 49.5182 | 0.8883 | 0.8875 | 0.8892 |
1.4557 | 2.0 | 1758 | 1.8611 | 0.4491 | 0.2031 | 0.3721 | 0.4148 | 49.6091 | 0.8901 | 0.8889 | 0.8915 |
1.8149 | 3.0 | 2637 | 1.8386 | 0.4436 | 0.2001 | 0.3707 | 0.4092 | 49.5636 | 0.8905 | 0.889 | 0.8923 |
2.7192 | 4.0 | 3516 | 1.8271 | 0.4366 | 0.1966 | 0.3643 | 0.4041 | 49.6091 | 0.8897 | 0.8878 | 0.8917 |
1.7838 | 5.0 | 4395 | 1.8276 | 0.4407 | 0.1997 | 0.3672 | 0.4075 | 49.5727 | 0.8906 | 0.8894 | 0.8921 |
Framework versions
- PEFT 0.12.1.dev0
- Transformers 4.44.0
- Pytorch 2.4.0
- Datasets 2.21.0
- Tokenizers 0.19.1