metadata
base_model: google-t5/t5-small
datasets:
- Andyrasika/TweetSumm-tuned
library_name: peft
license: apache-2.0
metrics:
- rouge
- f1
- precision
- recall
tags:
- generated_from_trainer
model-index:
- name: t5-small-QLoRA-TweetSumm-1724713795
results:
- task:
type: summarization
name: Summarization
dataset:
name: Andyrasika/TweetSumm-tuned
type: Andyrasika/TweetSumm-tuned
metrics:
- type: rouge
value: 0.4298
name: Rouge1
- type: f1
value: 0.887
name: F1
- type: precision
value: 0.8838
name: Precision
- type: recall
value: 0.8904
name: Recall
t5-small-QLoRA-TweetSumm-1724713795
This model is a fine-tuned version of google-t5/t5-small on the Andyrasika/TweetSumm-tuned dataset. It achieves the following results on the evaluation set:
- Loss: 2.0940
- Rouge1: 0.4298
- Rouge2: 0.1915
- Rougel: 0.3559
- Rougelsum: 0.3956
- Gen Len: 47.8091
- F1: 0.887
- Precision: 0.8838
- Recall: 0.8904
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | F1 | Precision | Recall |
---|---|---|---|---|---|---|---|---|---|---|---|
2.3641 | 1.0 | 110 | 2.2019 | 0.4172 | 0.1774 | 0.3518 | 0.386 | 47.7636 | 0.8828 | 0.8806 | 0.8852 |
2.2228 | 2.0 | 220 | 2.1040 | 0.419 | 0.1789 | 0.3477 | 0.3827 | 48.1182 | 0.8846 | 0.882 | 0.8875 |
2.0174 | 3.0 | 330 | 2.0940 | 0.4298 | 0.1915 | 0.3559 | 0.3956 | 47.8091 | 0.887 | 0.8838 | 0.8904 |
Framework versions
- PEFT 0.12.1.dev0
- Transformers 4.44.0
- Pytorch 2.4.0
- Datasets 2.21.0
- Tokenizers 0.19.1