Edit model card

text-classification

This model is a fine-tuned version of mrm8488/electricidad-base-discriminator on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4197
  • Accuracy: 0.4503

Model description

Este modelo emplea un algoritmo de clasificación de textos. Emplea el modelo Electricidad para tokenizar el texto.

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 388 1.3400 0.4052
1.3886 2.0 776 1.2878 0.4387
0.9608 3.0 1164 1.4197 0.4503

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0
Downloads last month
5
Safetensors
Model size
110M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for sanar085/text-classification

Finetuned
(91)
this model