santiviquez's picture
End of training
4dad25d
metadata
license: mit
base_model: nlptown/bert-base-multilingual-uncased-sentiment
tags:
  - generated_from_trainer
datasets:
  - amazon_reviews_multi
metrics:
  - accuracy
  - f1
model-index:
  - name: amazon-reviews-finetuning-bert-base-sentiment
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: amazon_reviews_multi
          type: amazon_reviews_multi
          config: en
          split: validation
          args: en
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.5764
          - name: F1
            type: f1
            value: 0.5738591890717804

amazon-reviews-finetuning-bert-base-sentiment

This model is a fine-tuned version of nlptown/bert-base-multilingual-uncased-sentiment on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0136
  • Accuracy: 0.5764
  • F1: 0.5739

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.9867 1.0 1563 0.9814 0.5792 0.5677
0.8435 2.0 3126 1.0136 0.5764 0.5739

Framework versions

  • Transformers 4.33.2
  • Pytorch 2.0.0
  • Datasets 2.14.6.dev0
  • Tokenizers 0.13.3