|
--- |
|
|
|
language: |
|
- en |
|
tags: |
|
- coreference-resolution |
|
license: |
|
- cc-by-nc-sa-4.0 |
|
datasets: |
|
- PreCo |
|
metrics: |
|
- CoNLL |
|
task_categories: |
|
- coreference-resolution |
|
model-index: |
|
- name: sapienzanlp/maverick-mes-preco |
|
results: |
|
- task: |
|
type: coreference-resolution |
|
name: coreference-resolution |
|
dataset: |
|
name: preco |
|
type: coreference |
|
metrics: |
|
- name: Avg. F1 |
|
type: CoNLL |
|
value: 87.4 |
|
|
|
--- |
|
|
|
|
|
# Maverick mes PreCo |
|
Official weights for *Maverick-mes* trained on PreCo and based on DeBERTa-large. |
|
This model achieves 87.4 Avg CoNLL-F1 on PreCo coreference resolution dataset. |
|
|
|
Other available models at [SapienzaNLP huggingface hub](https://huggingface.co/collections/sapienzanlp/maverick-coreference-resolution-66a750a50246fad8d9c7086a): |
|
|
|
| hf_model_name | training dataset | Score | Singletons | |
|
|:-----------------------------------:|:----------------:|:-----:|:----------:| |
|
| ["sapienzanlp/maverick-mes-ontonotes"](https://huggingface.co/sapienzanlp/maverick-mes-ontonotes) | OntoNotes | 83.6 | No | |
|
| ["sapienzanlp/maverick-mes-litbank"](https://huggingface.co/sapienzanlp/maverick-mes-litbank) | LitBank | 78.0 | Yes | |
|
| ["sapienzanlp/maverick-mes-preco"](https://huggingface.co/sapienzanlp/maverick-mes-preco) | PreCo | 87.4 | Yes | |
|
<!-- | ["sapienzanlp/maverick-s2e-ontonotes"](https://huggingface.co/sapienzanlp/maverick-mes-preco) | OntoNotes | 83.4 | No | No | --> |
|
<!-- | "sapienzanlp/maverick-incr-ontonotes" | Ontonotes | 83.5 | No | No | --> |
|
<!-- | "sapienzanlp/maverick-mes-ontonotes-base" | Ontonotes | 81.4 | No | No | --> |
|
<!-- | "sapienzanlp/maverick-s2e-ontonotes-base" | Ontonotes | 81.1 | No | No | --> |
|
<!-- | "sapienzanlp/maverick-incr-ontonotes-base" | Ontonotes | 81.0 | No | No | --> |
|
<!-- | "sapienzanlp/maverick-s2e-litbank" | LitBank | 77.6 | Yes | No | --> |
|
<!-- | "sapienzanlp/maverick-incr-litbank" | LitBank | 78.3 | Yes | No | --> |
|
<!-- | "sapienzanlp/maverick-s2e-preco" | PreCo | 87.2 | Yes | No | --> |
|
<!-- | "sapienzanlp/maverick-incr-preco" | PreCo | 88.0 | Yes | No | --> |
|
N.B. Each dataset has different annotation guidelines, choose your model according to your use case. |
|
|
|
|
|
## Maverick: Efficient and Accurate Coreference Resolution Defying recent trends |
|
|
|
[![Conference](https://img.shields.io/badge/ACL%202024%20Paper-red)](https://arxiv.org/pdf/2407.21489) |
|
[![License: CC BY-NC 4.0](https://img.shields.io/badge/License-CC%20BY--NC%204.0-green.svg)](https://creativecommons.org/licenses/by-nc/4.0/) |
|
[![Pip Package](https://img.shields.io/badge/๐%20Python%20package-blue)](https://pypi.org/project/maverick-coref/) |
|
[![git](https://img.shields.io/badge/Git%20Repo%20-yellow.svg)](https://github.com/SapienzaNLP/maverick-coref) |
|
|
|
### Citation |
|
|
|
``` |
|
@inproceedings{martinelli-etal-2024-maverick, |
|
title = "Maverick: Efficient and Accurate Coreference Resolution Defying Recent Trends", |
|
author = "Martinelli, Giuliano and |
|
Barba, Edoardo and |
|
Navigli, Roberto", |
|
booktitle = "Proceedings of the Annual Meeting of the Association for Computational Linguistics (ACL 2024)", |
|
year = "2024", |
|
address = "Bangkok, Thailand", |
|
publisher = "Association for Computational Linguistics", |
|
} |
|
``` |