metadata
base_model: FacebookAI/xlm-roberta-base
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: >-
Banco Sabadell confirma el día de pago de pensiones para jubilados en
agosto.
- text: >-
Banco Santander supera resistencias y avanza hacia máximos anuales, lo que
tiene implicaciones para los inversores.
- text: >-
Abre una cuenta online gratuita en BBVA, domicilia tu nómina durante 12
meses y recibe 250€ usando el código 90030031951793.
- text: >-
MyInvestor tiene una grave falta de oferta en acciones individuales y sus
comisiones son peores que las de ING en ese mismo ámbito.
- text: >-
Los recicladores están durmiendo en la vereda del BBVA y el fin de semana
dentro del cajero, mientras la seguridad parece ausente.
inference: true
model-index:
- name: SetFit with FacebookAI/xlm-roberta-base
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.7138461538461538
name: Accuracy
SetFit with FacebookAI/xlm-roberta-base
This is a SetFit model that can be used for Text Classification. This SetFit model uses FacebookAI/xlm-roberta-base as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: FacebookAI/xlm-roberta-base
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 2 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
discard |
|
relevant |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.7138 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("saraestevez/setfit-xlm-bank-tweets-processed-80")
# Run inference
preds = model("Banco Sabadell confirma el día de pago de pensiones para jubilados en agosto.")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 1 | 21.0437 | 36 |
Label | Training Sample Count |
---|---|
discard | 80 |
relevant | 80 |
Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 20
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0025 | 1 | 0.4924 | - |
0.125 | 50 | 0.2519 | - |
0.25 | 100 | 0.186 | - |
0.375 | 150 | 0.188 | - |
0.5 | 200 | 0.0504 | - |
0.625 | 250 | 0.0412 | - |
0.75 | 300 | 0.0147 | - |
0.875 | 350 | 0.0517 | - |
1.0 | 400 | 0.0162 | - |
Framework Versions
- Python: 3.11.0rc1
- SetFit: 1.0.3
- Sentence Transformers: 2.7.0
- Transformers: 4.39.0
- PyTorch: 2.3.1+cu121
- Datasets: 2.19.1
- Tokenizers: 0.15.2
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}