|
--- |
|
language: [] |
|
library_name: sentence-transformers |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:557850 |
|
- loss:MatryoshkaLoss |
|
- loss:MultipleNegativesRankingLoss |
|
base_model: Geotrend/bert-base-sw-cased |
|
datasets: [] |
|
metrics: |
|
- pearson_cosine |
|
- spearman_cosine |
|
- pearson_manhattan |
|
- spearman_manhattan |
|
- pearson_euclidean |
|
- spearman_euclidean |
|
- pearson_dot |
|
- spearman_dot |
|
- pearson_max |
|
- spearman_max |
|
widget: |
|
- source_sentence: Mwanamume aliyepangwa vizuri anasimama kwa mguu mmoja karibu na |
|
pwani safi ya bahari. |
|
sentences: |
|
- mtu anacheka wakati wa kufua nguo |
|
- Mwanamume fulani yuko nje karibu na ufuo wa bahari. |
|
- Mwanamume fulani ameketi kwenye sofa yake. |
|
- source_sentence: Mwanamume mwenye ngozi nyeusi akivuta sigareti karibu na chombo |
|
cha taka cha kijani. |
|
sentences: |
|
- Karibu na chombo cha taka mwanamume huyo alisimama na kuvuta sigareti |
|
- Kitanda ni chafu. |
|
- Alipokuwa kwenye dimbwi la kuogelea mvulana huyo mwenye ugonjwa wa albino alijihadhari |
|
na jua kupita kiasi |
|
- source_sentence: Mwanamume kijana mwenye nywele nyekundu anaketi ukutani akisoma |
|
gazeti huku mwanamke na msichana mchanga wakipita. |
|
sentences: |
|
- Mwanamume aliyevalia shati la bluu amegonga ukuta kando ya barabara na gari la |
|
bluu na gari nyekundu lenye maji nyuma. |
|
- Mwanamume mchanga anatazama gazeti huku wanawake wawili wakipita karibu naye. |
|
- Mwanamume huyo mchanga analala huku Mama akimwongoza binti yake kwenye bustani. |
|
- source_sentence: Wasichana wako nje. |
|
sentences: |
|
- Wasichana wawili wakisafiri kwenye sehemu ya kusisimua. |
|
- Kuna watu watatu wakiongoza gari linaloweza kugeuzwa-geuzwa wakipita watu wengine. |
|
- Wasichana watatu wamesimama pamoja katika chumba, mmoja anasikiliza, mwingine |
|
anaandika ukutani na wa tatu anaongea nao. |
|
- source_sentence: Mwanamume aliyevalia koti la bluu la kuzuia upepo, amelala uso |
|
chini kwenye benchi ya bustani, akiwa na chupa ya pombe iliyofungwa kwenye mojawapo |
|
ya miguu ya benchi. |
|
sentences: |
|
- Mwanamume amelala uso chini kwenye benchi ya bustani. |
|
- Mwanamke anaunganisha uzi katika mipira kando ya rundo la mipira |
|
- Mwanamume fulani anacheza dansi kwenye klabu hiyo akifungua chupa. |
|
pipeline_tag: sentence-similarity |
|
model-index: |
|
- name: SentenceTransformer based on Geotrend/bert-base-sw-cased |
|
results: |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test 768 |
|
type: sts-test-768 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.6868804546581948 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.6801625382694466 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.6719079171543956 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.6653137984517007 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.6734384393604611 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.6665812962708187 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.5540255947111082 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.5399212934179993 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.6868804546581948 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.6801625382694466 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test 512 |
|
type: sts-test-512 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.6827780698031986 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.6770486364807735 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.6729437410000495 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.6664360018282044 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.6738342605019458 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.6666791464094138 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.5296210420398023 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.5173769714392553 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.6827780698031986 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.6770486364807735 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test 256 |
|
type: sts-test-256 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.6758051721795716 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.6701833115162764 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.671762500960023 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.6643430423969034 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.6730238156482042 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.6649839339725255 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.48923961423508167 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.4783312389130331 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.6758051721795716 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.6701833115162764 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test 128 |
|
type: sts-test-128 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.6700363607439113 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.6637709194412489 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.6692814840348797 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.6594295578885248 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.671006713633375 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.6600674238087292 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.45094972472157246 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.44023350072779777 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.671006713633375 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.6637709194412489 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test 64 |
|
type: sts-test-64 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.6614685875750459 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.6556282400518681 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.665261323713716 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.6533415018004937 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.6671725346980402 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.6540012112658994 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.38682442010639634 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.37712136401470375 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.6671725346980402 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.6556282400518681 |
|
name: Spearman Max |
|
--- |
|
|
|
# SentenceTransformer based on Geotrend/bert-base-sw-cased |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Geotrend/bert-base-sw-cased](https://huggingface.co/Geotrend/bert-base-sw-cased). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [Geotrend/bert-base-sw-cased](https://huggingface.co/Geotrend/bert-base-sw-cased) <!-- at revision 7d9ca957a81d2449cf1319af0b91f75f11642336 --> |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Output Dimensionality:** 768 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("sartifyllc/swahili-bert-base-sw-cased-nli-matryoshka") |
|
# Run inference |
|
sentences = [ |
|
'Mwanamume aliyevalia koti la bluu la kuzuia upepo, amelala uso chini kwenye benchi ya bustani, akiwa na chupa ya pombe iliyofungwa kwenye mojawapo ya miguu ya benchi.', |
|
'Mwanamume amelala uso chini kwenye benchi ya bustani.', |
|
'Mwanamume fulani anacheza dansi kwenye klabu hiyo akifungua chupa.', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-test-768` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.6869 | |
|
| **spearman_cosine** | **0.6802** | |
|
| pearson_manhattan | 0.6719 | |
|
| spearman_manhattan | 0.6653 | |
|
| pearson_euclidean | 0.6734 | |
|
| spearman_euclidean | 0.6666 | |
|
| pearson_dot | 0.554 | |
|
| spearman_dot | 0.5399 | |
|
| pearson_max | 0.6869 | |
|
| spearman_max | 0.6802 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-test-512` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:----------| |
|
| pearson_cosine | 0.6828 | |
|
| **spearman_cosine** | **0.677** | |
|
| pearson_manhattan | 0.6729 | |
|
| spearman_manhattan | 0.6664 | |
|
| pearson_euclidean | 0.6738 | |
|
| spearman_euclidean | 0.6667 | |
|
| pearson_dot | 0.5296 | |
|
| spearman_dot | 0.5174 | |
|
| pearson_max | 0.6828 | |
|
| spearman_max | 0.677 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-test-256` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.6758 | |
|
| **spearman_cosine** | **0.6702** | |
|
| pearson_manhattan | 0.6718 | |
|
| spearman_manhattan | 0.6643 | |
|
| pearson_euclidean | 0.673 | |
|
| spearman_euclidean | 0.665 | |
|
| pearson_dot | 0.4892 | |
|
| spearman_dot | 0.4783 | |
|
| pearson_max | 0.6758 | |
|
| spearman_max | 0.6702 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-test-128` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.67 | |
|
| **spearman_cosine** | **0.6638** | |
|
| pearson_manhattan | 0.6693 | |
|
| spearman_manhattan | 0.6594 | |
|
| pearson_euclidean | 0.671 | |
|
| spearman_euclidean | 0.6601 | |
|
| pearson_dot | 0.4509 | |
|
| spearman_dot | 0.4402 | |
|
| pearson_max | 0.671 | |
|
| spearman_max | 0.6638 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-test-64` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.6615 | |
|
| **spearman_cosine** | **0.6556** | |
|
| pearson_manhattan | 0.6653 | |
|
| spearman_manhattan | 0.6533 | |
|
| pearson_euclidean | 0.6672 | |
|
| spearman_euclidean | 0.654 | |
|
| pearson_dot | 0.3868 | |
|
| spearman_dot | 0.3771 | |
|
| pearson_max | 0.6672 | |
|
| spearman_max | 0.6556 | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `per_device_train_batch_size`: 16 |
|
- `per_device_eval_batch_size`: 16 |
|
- `learning_rate`: 2e-05 |
|
- `num_train_epochs`: 1 |
|
- `warmup_ratio`: 0.1 |
|
- `bf16`: True |
|
- `batch_sampler`: no_duplicates |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 16 |
|
- `per_device_eval_batch_size`: 16 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `learning_rate`: 2e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 1 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: True |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_sampler`: no_duplicates |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
<details><summary>Click to expand</summary> |
|
|
|
| Epoch | Step | Training Loss | sts-test-128_spearman_cosine | sts-test-256_spearman_cosine | sts-test-512_spearman_cosine | sts-test-64_spearman_cosine | sts-test-768_spearman_cosine | |
|
|:------:|:-----:|:-------------:|:----------------------------:|:----------------------------:|:----------------------------:|:---------------------------:|:----------------------------:| |
|
| 0.0057 | 100 | 20.0932 | - | - | - | - | - | |
|
| 0.0115 | 200 | 16.2641 | - | - | - | - | - | |
|
| 0.0172 | 300 | 12.797 | - | - | - | - | - | |
|
| 0.0229 | 400 | 12.1927 | - | - | - | - | - | |
|
| 0.0287 | 500 | 11.0423 | - | - | - | - | - | |
|
| 0.0344 | 600 | 9.676 | - | - | - | - | - | |
|
| 0.0402 | 700 | 8.1545 | - | - | - | - | - | |
|
| 0.0459 | 800 | 7.7822 | - | - | - | - | - | |
|
| 0.0516 | 900 | 7.9352 | - | - | - | - | - | |
|
| 0.0574 | 1000 | 7.9534 | - | - | - | - | - | |
|
| 0.0631 | 1100 | 8.1006 | - | - | - | - | - | |
|
| 0.0688 | 1200 | 7.4767 | - | - | - | - | - | |
|
| 0.0746 | 1300 | 8.3747 | - | - | - | - | - | |
|
| 0.0803 | 1400 | 7.7686 | - | - | - | - | - | |
|
| 0.0860 | 1500 | 6.8076 | - | - | - | - | - | |
|
| 0.0918 | 1600 | 6.9238 | - | - | - | - | - | |
|
| 0.0975 | 1700 | 6.5503 | - | - | - | - | - | |
|
| 0.1033 | 1800 | 6.74 | - | - | - | - | - | |
|
| 0.1090 | 1900 | 7.7802 | - | - | - | - | - | |
|
| 0.1147 | 2000 | 7.2594 | - | - | - | - | - | |
|
| 0.1205 | 2100 | 7.091 | - | - | - | - | - | |
|
| 0.1262 | 2200 | 6.8677 | - | - | - | - | - | |
|
| 0.1319 | 2300 | 6.4249 | - | - | - | - | - | |
|
| 0.1377 | 2400 | 6.1512 | - | - | - | - | - | |
|
| 0.1434 | 2500 | 5.9714 | - | - | - | - | - | |
|
| 0.1491 | 2600 | 5.4914 | - | - | - | - | - | |
|
| 0.1549 | 2700 | 5.5825 | - | - | - | - | - | |
|
| 0.1606 | 2800 | 5.9456 | - | - | - | - | - | |
|
| 0.1664 | 2900 | 6.4012 | - | - | - | - | - | |
|
| 0.1721 | 3000 | 7.1999 | - | - | - | - | - | |
|
| 0.1778 | 3100 | 6.8254 | - | - | - | - | - | |
|
| 0.1836 | 3200 | 6.541 | - | - | - | - | - | |
|
| 0.1893 | 3300 | 6.5411 | - | - | - | - | - | |
|
| 0.1950 | 3400 | 5.56 | - | - | - | - | - | |
|
| 0.2008 | 3500 | 6.4692 | - | - | - | - | - | |
|
| 0.2065 | 3600 | 5.9266 | - | - | - | - | - | |
|
| 0.2122 | 3700 | 6.2055 | - | - | - | - | - | |
|
| 0.2180 | 3800 | 6.0835 | - | - | - | - | - | |
|
| 0.2237 | 3900 | 6.6112 | - | - | - | - | - | |
|
| 0.2294 | 4000 | 6.3391 | - | - | - | - | - | |
|
| 0.2352 | 4100 | 5.8379 | - | - | - | - | - | |
|
| 0.2409 | 4200 | 5.8107 | - | - | - | - | - | |
|
| 0.2467 | 4300 | 6.1473 | - | - | - | - | - | |
|
| 0.2524 | 4400 | 6.2827 | - | - | - | - | - | |
|
| 0.2581 | 4500 | 6.2299 | - | - | - | - | - | |
|
| 0.2639 | 4600 | 6.1013 | - | - | - | - | - | |
|
| 0.2696 | 4700 | 5.6491 | - | - | - | - | - | |
|
| 0.2753 | 4800 | 5.8641 | - | - | - | - | - | |
|
| 0.2811 | 4900 | 5.4278 | - | - | - | - | - | |
|
| 0.2868 | 5000 | 5.7304 | - | - | - | - | - | |
|
| 0.2925 | 5100 | 5.4652 | - | - | - | - | - | |
|
| 0.2983 | 5200 | 5.9031 | - | - | - | - | - | |
|
| 0.3040 | 5300 | 6.1014 | - | - | - | - | - | |
|
| 0.3098 | 5400 | 5.9282 | - | - | - | - | - | |
|
| 0.3155 | 5500 | 5.6618 | - | - | - | - | - | |
|
| 0.3212 | 5600 | 5.3803 | - | - | - | - | - | |
|
| 0.3270 | 5700 | 5.5759 | - | - | - | - | - | |
|
| 0.3327 | 5800 | 5.6936 | - | - | - | - | - | |
|
| 0.3384 | 5900 | 5.7249 | - | - | - | - | - | |
|
| 0.3442 | 6000 | 5.5926 | - | - | - | - | - | |
|
| 0.3499 | 6100 | 5.6329 | - | - | - | - | - | |
|
| 0.3556 | 6200 | 5.7456 | - | - | - | - | - | |
|
| 0.3614 | 6300 | 5.1638 | - | - | - | - | - | |
|
| 0.3671 | 6400 | 5.3258 | - | - | - | - | - | |
|
| 0.3729 | 6500 | 5.1216 | - | - | - | - | - | |
|
| 0.3786 | 6600 | 5.7453 | - | - | - | - | - | |
|
| 0.3843 | 6700 | 4.9906 | - | - | - | - | - | |
|
| 0.3901 | 6800 | 5.1126 | - | - | - | - | - | |
|
| 0.3958 | 6900 | 5.2389 | - | - | - | - | - | |
|
| 0.4015 | 7000 | 5.1483 | - | - | - | - | - | |
|
| 0.4073 | 7100 | 5.6072 | - | - | - | - | - | |
|
| 0.4130 | 7200 | 5.2018 | - | - | - | - | - | |
|
| 0.4187 | 7300 | 5.4083 | - | - | - | - | - | |
|
| 0.4245 | 7400 | 5.1995 | - | - | - | - | - | |
|
| 0.4302 | 7500 | 5.5787 | - | - | - | - | - | |
|
| 0.4360 | 7600 | 4.9942 | - | - | - | - | - | |
|
| 0.4417 | 7700 | 4.9196 | - | - | - | - | - | |
|
| 0.4474 | 7800 | 5.3938 | - | - | - | - | - | |
|
| 0.4532 | 7900 | 5.381 | - | - | - | - | - | |
|
| 0.4589 | 8000 | 4.908 | - | - | - | - | - | |
|
| 0.4646 | 8100 | 4.8871 | - | - | - | - | - | |
|
| 0.4704 | 8200 | 5.2298 | - | - | - | - | - | |
|
| 0.4761 | 8300 | 4.6157 | - | - | - | - | - | |
|
| 0.4818 | 8400 | 5.0344 | - | - | - | - | - | |
|
| 0.4876 | 8500 | 5.0713 | - | - | - | - | - | |
|
| 0.4933 | 8600 | 5.1952 | - | - | - | - | - | |
|
| 0.4991 | 8700 | 5.5352 | - | - | - | - | - | |
|
| 0.5048 | 8800 | 5.1556 | - | - | - | - | - | |
|
| 0.5105 | 8900 | 5.2318 | - | - | - | - | - | |
|
| 0.5163 | 9000 | 4.7887 | - | - | - | - | - | |
|
| 0.5220 | 9100 | 4.868 | - | - | - | - | - | |
|
| 0.5277 | 9200 | 4.9544 | - | - | - | - | - | |
|
| 0.5335 | 9300 | 4.816 | - | - | - | - | - | |
|
| 0.5392 | 9400 | 4.8374 | - | - | - | - | - | |
|
| 0.5449 | 9500 | 5.3242 | - | - | - | - | - | |
|
| 0.5507 | 9600 | 4.9039 | - | - | - | - | - | |
|
| 0.5564 | 9700 | 5.2907 | - | - | - | - | - | |
|
| 0.5622 | 9800 | 5.4007 | - | - | - | - | - | |
|
| 0.5679 | 9900 | 5.3016 | - | - | - | - | - | |
|
| 0.5736 | 10000 | 5.3235 | - | - | - | - | - | |
|
| 0.5794 | 10100 | 5.1566 | - | - | - | - | - | |
|
| 0.5851 | 10200 | 5.1348 | - | - | - | - | - | |
|
| 0.5908 | 10300 | 5.4583 | - | - | - | - | - | |
|
| 0.5966 | 10400 | 4.9528 | - | - | - | - | - | |
|
| 0.6023 | 10500 | 5.0073 | - | - | - | - | - | |
|
| 0.6080 | 10600 | 5.0324 | - | - | - | - | - | |
|
| 0.6138 | 10700 | 5.4107 | - | - | - | - | - | |
|
| 0.6195 | 10800 | 5.3643 | - | - | - | - | - | |
|
| 0.6253 | 10900 | 5.1267 | - | - | - | - | - | |
|
| 0.6310 | 11000 | 5.0443 | - | - | - | - | - | |
|
| 0.6367 | 11100 | 5.2001 | - | - | - | - | - | |
|
| 0.6425 | 11200 | 4.8813 | - | - | - | - | - | |
|
| 0.6482 | 11300 | 5.4734 | - | - | - | - | - | |
|
| 0.6539 | 11400 | 5.0344 | - | - | - | - | - | |
|
| 0.6597 | 11500 | 5.5043 | - | - | - | - | - | |
|
| 0.6654 | 11600 | 4.6201 | - | - | - | - | - | |
|
| 0.6711 | 11700 | 5.4626 | - | - | - | - | - | |
|
| 0.6769 | 11800 | 5.3813 | - | - | - | - | - | |
|
| 0.6826 | 11900 | 4.626 | - | - | - | - | - | |
|
| 0.6883 | 12000 | 4.87 | - | - | - | - | - | |
|
| 0.6941 | 12100 | 5.0015 | - | - | - | - | - | |
|
| 0.6998 | 12200 | 4.962 | - | - | - | - | - | |
|
| 0.7056 | 12300 | 5.1613 | - | - | - | - | - | |
|
| 0.7113 | 12400 | 5.2074 | - | - | - | - | - | |
|
| 0.7170 | 12500 | 4.958 | - | - | - | - | - | |
|
| 0.7228 | 12600 | 4.4516 | - | - | - | - | - | |
|
| 0.7285 | 12700 | 4.8421 | - | - | - | - | - | |
|
| 0.7342 | 12800 | 4.9242 | - | - | - | - | - | |
|
| 0.7400 | 12900 | 4.9256 | - | - | - | - | - | |
|
| 0.7457 | 13000 | 4.8254 | - | - | - | - | - | |
|
| 0.7514 | 13100 | 4.5114 | - | - | - | - | - | |
|
| 0.7572 | 13200 | 7.7118 | - | - | - | - | - | |
|
| 0.7629 | 13300 | 7.0822 | - | - | - | - | - | |
|
| 0.7687 | 13400 | 6.8022 | - | - | - | - | - | |
|
| 0.7744 | 13500 | 6.7295 | - | - | - | - | - | |
|
| 0.7801 | 13600 | 6.0547 | - | - | - | - | - | |
|
| 0.7859 | 13700 | 6.5285 | - | - | - | - | - | |
|
| 0.7916 | 13800 | 6.2666 | - | - | - | - | - | |
|
| 0.7973 | 13900 | 6.1031 | - | - | - | - | - | |
|
| 0.8031 | 14000 | 5.9138 | - | - | - | - | - | |
|
| 0.8088 | 14100 | 5.6636 | - | - | - | - | - | |
|
| 0.8145 | 14200 | 5.7073 | - | - | - | - | - | |
|
| 0.8203 | 14300 | 5.7963 | - | - | - | - | - | |
|
| 0.8260 | 14400 | 5.7336 | - | - | - | - | - | |
|
| 0.8318 | 14500 | 5.8113 | - | - | - | - | - | |
|
| 0.8375 | 14600 | 5.6708 | - | - | - | - | - | |
|
| 0.8432 | 14700 | 5.4565 | - | - | - | - | - | |
|
| 0.8490 | 14800 | 5.4293 | - | - | - | - | - | |
|
| 0.8547 | 14900 | 5.4166 | - | - | - | - | - | |
|
| 0.8604 | 15000 | 5.3616 | - | - | - | - | - | |
|
| 0.8662 | 15100 | 5.1579 | - | - | - | - | - | |
|
| 0.8719 | 15200 | 5.3887 | - | - | - | - | - | |
|
| 0.8776 | 15300 | 5.346 | - | - | - | - | - | |
|
| 0.8834 | 15400 | 5.2762 | - | - | - | - | - | |
|
| 0.8891 | 15500 | 5.3417 | - | - | - | - | - | |
|
| 0.8949 | 15600 | 5.1607 | - | - | - | - | - | |
|
| 0.9006 | 15700 | 5.4493 | - | - | - | - | - | |
|
| 0.9063 | 15800 | 5.0268 | - | - | - | - | - | |
|
| 0.9121 | 15900 | 5.0612 | - | - | - | - | - | |
|
| 0.9178 | 16000 | 5.1471 | - | - | - | - | - | |
|
| 0.9235 | 16100 | 4.8275 | - | - | - | - | - | |
|
| 0.9293 | 16200 | 5.1464 | - | - | - | - | - | |
|
| 0.9350 | 16300 | 4.958 | - | - | - | - | - | |
|
| 0.9407 | 16400 | 5.1968 | - | - | - | - | - | |
|
| 0.9465 | 16500 | 4.7783 | - | - | - | - | - | |
|
| 0.9522 | 16600 | 5.0834 | - | - | - | - | - | |
|
| 0.9580 | 16700 | 4.9839 | - | - | - | - | - | |
|
| 0.9637 | 16800 | 5.0078 | - | - | - | - | - | |
|
| 0.9694 | 16900 | 5.1624 | - | - | - | - | - | |
|
| 0.9752 | 17000 | 5.2132 | - | - | - | - | - | |
|
| 0.9809 | 17100 | 4.9741 | - | - | - | - | - | |
|
| 0.9866 | 17200 | 4.96 | - | - | - | - | - | |
|
| 0.9924 | 17300 | 5.1834 | - | - | - | - | - | |
|
| 0.9981 | 17400 | 4.8955 | - | - | - | - | - | |
|
| 1.0 | 17433 | - | 0.6638 | 0.6702 | 0.6770 | 0.6556 | 0.6802 | |
|
|
|
</details> |
|
|
|
### Framework Versions |
|
- Python: 3.11.9 |
|
- Sentence Transformers: 3.0.1 |
|
- Transformers: 4.40.1 |
|
- PyTorch: 2.3.0+cu121 |
|
- Accelerate: 0.29.3 |
|
- Datasets: 2.19.0 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MatryoshkaLoss |
|
```bibtex |
|
@misc{kusupati2024matryoshka, |
|
title={Matryoshka Representation Learning}, |
|
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, |
|
year={2024}, |
|
eprint={2205.13147}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.LG} |
|
} |
|
``` |
|
|
|
#### MultipleNegativesRankingLoss |
|
```bibtex |
|
@misc{henderson2017efficient, |
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
year={2017}, |
|
eprint={1705.00652}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |