sasuface's picture
End of training
d5b4a3d verified
|
raw
history blame
2.09 kB
metadata
license: mit
library_name: peft
tags:
  - generated_from_trainer
base_model: facebook/esm2_t12_35M_UR50D
metrics:
  - precision
  - recall
  - accuracy
model-index:
  - name: esm2-t12-35M-lora-64-remote-homology-filtered
    results: []

esm2-t12-35M-lora-64-remote-homology-filtered

This model is a fine-tuned version of facebook/esm2_t12_35M_UR50D on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5657
  • Precision: 0.7166
  • Recall: 0.6986
  • F1-score: 0.7075
  • Accuracy: 0.7141

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1-score Accuracy
0.6191 1.0 7969 0.6185 0.6919 0.5824 0.6325 0.6650
0.5921 2.0 15938 0.5838 0.7201 0.6339 0.6742 0.6968
0.5874 3.0 23907 0.5751 0.7439 0.6104 0.6705 0.7032
0.5593 4.0 31876 0.5664 0.7210 0.6833 0.7016 0.7124
0.576 5.0 39845 0.5657 0.7166 0.6986 0.7075 0.7141

Framework versions

  • PEFT 0.11.1
  • Transformers 4.39.3
  • Pytorch 2.1.2
  • Datasets 2.18.0
  • Tokenizers 0.15.2