sasuface's picture
End of training
580b0da verified
metadata
license: bsd-3-clause
library_name: peft
tags:
  - generated_from_trainer
base_model: hugohrban/progen2-small
metrics:
  - precision
  - recall
  - accuracy
model-index:
  - name: progen2-small-lora-64-remote-homology-filtered
    results: []

progen2-small-lora-64-remote-homology-filtered

This model is a fine-tuned version of hugohrban/progen2-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1353
  • Precision: 0.9499
  • Recall: 0.9699
  • F1-score: 0.9598
  • Accuracy: 0.9595

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 192
  • eval_batch_size: 192
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 384
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1-score Accuracy
0.3088 0.9985 332 0.2490 0.8692 0.9277 0.8975 0.8943
0.1806 2.0 665 0.1541 0.9259 0.9507 0.9382 0.9375
0.1036 2.9985 997 0.1190 0.9522 0.9541 0.9532 0.9532
0.0533 4.0 1330 0.1140 0.9538 0.9628 0.9582 0.9581
0.0272 4.9925 1660 0.1353 0.9499 0.9699 0.9598 0.9595

Framework versions

  • PEFT 0.10.0
  • Transformers 4.40.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1