File size: 11,244 Bytes
11c24e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
from dataclasses import dataclass
import torch
import torch.nn as nn
from torch.nn import functional as F
import inspect

#------------------------------------------

class CausalSelfAttention(nn.Module):
    def __init__(self, config):
        super().__init__()
        # key, query, value projection for al heads but in a batch
        self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd)
        # output projection
        self.c_proj = nn.Linear(config.n_embd, config.n_embd)
        self.c_proj.NANOGPT_SCALE_INIT = True

        # regularization
        self.n_head = config.n_head
        self.n_embd = config.n_embd

        # not really a 'bias', more of a mask, but following a openAI/HF naming
        self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size))
                                    .view(1, 1, config.block_size, config.block_size))


    def forward(self, x):
        B, T, C = x.size() # batch_size, sequence_length, embedding dimensionality (n_embed)
        # calculate query, key, values for all heads in batch and move head forward to be the batch dim
        # nh is "number of heads", hs is "head size", and C (number of channels) = nh * hs
        # e.g. in GPT-2(124M), n_head = 12, hs = 64, so, nh*hs=C=768 channels in the transformer
        qkv = self.c_attn(x)
        q, k, v = qkv.split(self.n_embd, dim=2)
        k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
        q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
        v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)

        # attention (materilizes the large (T,T) matrix for all the queries and keys)
        # att = (q @ k.transpose(-2, -1)) * (1.0 / torch.sqrt(torch.tensor(k.size(-1))))
        # att = att.masked_fill(self.bias[:,:,:T,:T] == 0, float('-inf'))
        # att = F.softmax(att, dim=-1)
        # y = att @ v # (B, nh, T, T) @ (B, nh, T, hs) -> (B, nh, T, T)
        # 4 lines above replaced by flash- attention
        y = F.scaled_dot_product_attention(q, k, v, is_causal=True)

        y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side

        # output projection
        y = self.c_proj(y)
        return y

class MLP(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)
        self.gelu = nn.GELU(approximate='tanh') # historic reason for approximation
        self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)
        self.c_proj.NANOGPT_SCALE_INIT = True

    def forward(self, x):
        x = self.c_fc(x)
        x = self.gelu(x)
        x = self.c_proj(x)
        return x

class Block(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.ln_1 = nn.LayerNorm(config.n_embd)
        self.attn = CausalSelfAttention(config)
        self.ln_2 = nn.LayerNorm(config.n_embd)
        self.mlp = MLP(config)

    def forward(self, x):
        x = x + self.attn(self.ln_1(x))
        x = x + self.mlp(self.ln_2(x))
        return x

@dataclass
class GPTConfig:
    block_size: int = 1024  # max sequence lenghts
    vocab_size: int = 50257 # number of tokens, 50,000 BPE merges + 256 byte tokens + 1 <|endoftext|>
    n_layer: int = 12 # number of layers
    n_head: int = 12 # number of heads
    n_embd: int = 768 # embedding dim

class GPT(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.transformer = nn.ModuleDict(dict(
            wte = nn.Embedding(config.vocab_size, config.n_embd),
            wpe = nn.Embedding(config.block_size, config.n_embd),
            h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
            ln_f = nn.LayerNorm(config.n_embd),
        ))
        self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)

        # weight sharing scheme
        self.transformer.wte.weight = self.lm_head.weight

        # init
        self.apply(self._init_weights)

    def _init_weights(self, module):

        if isinstance(module, nn.Linear):
            std = 0.02
            if hasattr(module, 'NANOGPT_SCALE_INIT'):
                std = (2 * self.config.n_layer) ** -0.5 # 2 times as each layer has attention and MLP
            torch.nn.init.normal_(module.weight, mean=0.0, std=std)
            if module.bias is not None:
                torch.nn.init.zeros_(module.bias)
        elif isinstance(module, nn.Embedding):
            torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) # word embedding will be initialised twice

    def forward(self, idx, target = None):
        # idx of shape (B, T)
        B, T = idx.size()
        assert T <= self.config.block_size, f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}"
        # forward thetoken and position embedding
        pos = torch.arange(0, T, dtype = torch.long, device=idx.device) # (T)
        pos_emb = self.transformer.wpe(pos) # (T, C)
        tok_emb = self.transformer.wte(idx) # (B, T, C)
        x = tok_emb + pos_emb # (B, T, C)
        # forward the block for transformer
        for block in self.transformer.h:
            x = block(x)
        # forward the final layer nor and classifier
        x = self.transformer.ln_f(x)
        logits = self.lm_head(x) # (B, T, vocab_size)
        # compute the loss
        loss = None
        if target is not None:
            loss = F.cross_entropy(logits.view(-1, logits.size(-1)), target.view(-1))
        return logits, loss

    @classmethod
    def from_pretrained(cls, model_type):
        """ Loads pretrained GPT2 model from HuggingFace """
        assert model_type in {"gpt2", "gpt2-medium", "gpt2-large", "gpt2-xl"}
        from transformers import GPT2LMHeadModel
        print(f"Loading {model_type} model...")

        config_args = {
            "gpt2": dict(n_layer = 12, n_head = 12, n_embd = 768), # 124M
            "gpt2-medium": dict(n_layer = 24, n_head = 16, n_embd = 1024), # 350M
            "gpt2-large": dict(n_layer = 36, n_head = 20, n_embd = 1280), # 774M
            "gpt2-xl": dict(n_layer = 48, n_head = 25, n_embd = 1600), # 1558M
        }[model_type]

        config_args["vocab_size"] = 50257 # always for GPT2 checkpoints
        config_args["block_size"] = 1024 # always for GPT2 checkpoints

        config = GPTConfig(**config_args)
        model = GPT(config)
        sd = model.state_dict()
        sd_keys = sd.keys()

        sd_keys = [k for k in sd_keys if not k.endswith(".attn.bias")] # discard this mask

        # init hugging face model
        model_hf = GPT2LMHeadModel.from_pretrained(model_type)
        sd_hf = model_hf.state_dict()
        sd_keys_hf = sd_hf.keys()

        # copy while ensuring all of the parameters are aligned and match in names and types
        sd_keys_hf = [k for k in sd_keys_hf if not k.endswith(".attn.masked_bias")] # ignore these, just a buffer
        sd_keys_hf = [k for k in sd_keys_hf if not k.endswith(".attn.bias")] # same, just the mask (buffer)
        transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight']

        # basically the openai checkpoints use a "Conv1D" module, but we only want to use a vanilla Linear
        # this means that we have to transpose these weights when we import them
        assert len(sd_keys_hf) == len(sd_keys), f"mismatched keys: {len(sd_keys_hf)} != {len(sd_keys)}"
        for k in sd_keys_hf:
            if any(k.endswith(w) for w in transposed):
                # special treatment for the Conv1D weights we need to transpose
                assert sd_hf[k].shape[::-1] == sd[k].shape
                with torch.no_grad():
                    sd[k].copy_(sd_hf[k].t())
            else:
                # vanilla copy over the other parameters
                assert sd_hf[k].shape == sd[k].shape
                with torch.no_grad():
                    sd[k].copy_(sd_hf[k])

        return model

    def configure_optimizers(self, weight_decay, learning_rate, betas, device_type):
        # start with all of the candidate parameters
        param_dict = {pn: p for pn, p in self.named_parameters()}
        # filter out those that do not require grad
        param_dict = {pn: p for pn, p in param_dict.items() if p.requires_grad}
        # create optim groups. Any parameters that is 2D will be weight decayed, otherwise no.
        # i.e. all weight tensors in matmuls + embeddings decay, all biases and layernorms don't.
        decay_params = [p for n, p in param_dict.items() if p.dim() >= 2]
        nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2]
        optim_groups = [
            {'params': decay_params, 'weight_decay': weight_decay},
            {'params': nodecay_params, 'weight_decay': 0.0}
        ]
        num_decay_params = sum(p.numel() for p in decay_params)
        num_nodecay_params = sum(p.numel() for p in nodecay_params)
        print(f"num decayed parameter tensors: {len(decay_params)}, with {num_decay_params:,} parameters")
        print(f"num non-decayed parameter tensors: {len(nodecay_params)}, with {num_nodecay_params:,} parameters")
        # Create AdamW optimizer and use the fused version if it is available
        fused_available = 'fused' in inspect.signature(torch.optim.AdamW).parameters
        use_fused = fused_available and device_type == 'cuda'
        extra_args = dict(fused=True) if use_fused else dict()
        optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=betas, **extra_args)
        print(f"using fused AdamW: {use_fused}")

        return optimizer

    @torch.no_grad()
    def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None):
        """
        Take a conditioning sequence of indices idx (LongTensor of shape (b,t)) and complete
        the sequence max_new_tokens times, feeding the predictions back into the model each time.
        Most likely you'll want to make sure to be in model.eval() mode of operation for this.
        """
        for _ in range(max_new_tokens):
            # if the sequence context is growing too long we must crop it at block_size
            idx_cond = idx if idx.size(1) <= self.config.block_size else idx[:, -self.config.block_size:]
            # forward the model to get the logits for the index in the sequence
            logits, _ = self(idx_cond)
            # pluck the logits at the final step and scale by desired temperature
            logits = logits[:, -1, :] / temperature
            # optionally crop the logits to only the top k options
            if top_k is not None:
                v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
                logits[logits < v[:, [-1]]] = -float('Inf')
            # apply softmax to convert logits to (normalized) probabilities
            probs = F.softmax(logits, dim=-1)
            # sample from the distribution
            idx_next = torch.multinomial(probs, num_samples=1)
            # append sampled index to the running sequence and continue
            idx = torch.cat((idx, idx_next), dim=1)

        return idx