ppo-Hopper-v3 / README.md
araffin's picture
Upload README.md with huggingface_hub
b29cb57
metadata
library_name: stable-baselines3
tags:
  - Hopper-v3
  - deep-reinforcement-learning
  - reinforcement-learning
  - stable-baselines3
model-index:
  - name: PPO
    results:
      - metrics:
          - type: mean_reward
            value: 2410.11 +/- 9.86
            name: mean_reward
        task:
          type: reinforcement-learning
          name: reinforcement-learning
        dataset:
          name: Hopper-v3
          type: Hopper-v3

PPO Agent playing Hopper-v3

This is a trained model of a PPO agent playing Hopper-v3 using the stable-baselines3 library and the RL Zoo.

The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included.

Usage (with SB3 RL Zoo)

RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo
SB3: https://github.com/DLR-RM/stable-baselines3
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib

# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo ppo --env Hopper-v3 -orga sb3 -f logs/
python enjoy.py --algo ppo --env Hopper-v3  -f logs/

Training (with the RL Zoo)

python train.py --algo ppo --env Hopper-v3 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo ppo --env Hopper-v3 -f logs/ -orga sb3

Hyperparameters

OrderedDict([('batch_size', 32),
             ('clip_range', 0.2),
             ('ent_coef', 0.00229519),
             ('gae_lambda', 0.99),
             ('gamma', 0.999),
             ('learning_rate', 9.80828e-05),
             ('max_grad_norm', 0.7),
             ('n_envs', 1),
             ('n_epochs', 5),
             ('n_steps', 512),
             ('n_timesteps', 1000000.0),
             ('normalize', True),
             ('policy', 'MlpPolicy'),
             ('policy_kwargs',
              'dict( log_std_init=-2, ortho_init=False, activation_fn=nn.ReLU, '
              'net_arch=[dict(pi=[256, 256], vf=[256, 256])] )'),
             ('vf_coef', 0.835671),
             ('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})])