metadata
license: mit
base_model: xlm-roberta-base
tags:
- generated_from_keras_callback
model-index:
- name: scott-clare1/multi-language-sms-detection
results: []
scott-clare1/multi-language-sms-detection
This model is a fine-tuned version of xlm-roberta-base on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.0098
- Validation Loss: 0.0282
- Train Precision: 0.9825
- Train Recall: 0.9852
- Train F1: 0.9838
- Train Accuracy: 0.9934
- Epoch: 2
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2487, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
Training results
Train Loss | Validation Loss | Train Precision | Train Recall | Train F1 | Train Accuracy | Epoch |
---|---|---|---|---|---|---|
0.0191 | 0.0275 | 0.9832 | 0.9848 | 0.9840 | 0.9932 | 0 |
0.0116 | 0.0282 | 0.9825 | 0.9852 | 0.9838 | 0.9934 | 1 |
0.0098 | 0.0282 | 0.9825 | 0.9852 | 0.9838 | 0.9934 | 2 |
Framework versions
- Transformers 4.31.0
- TensorFlow 2.12.0
- Datasets 2.14.1
- Tokenizers 0.13.3