Edit model card

BERTopic_BrainlessChanel

This is a BERTopic model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.

Usage

To use this model, please install BERTopic:

pip install -U bertopic

You can use the model as follows:

from bertopic import BERTopic
topic_model = BERTopic.load("sdantonio/BERTopic_BrainlessChanel")

topic_model.get_topic_info()

Topic overview

  • Number of topics: 4
  • Number of training documents: 68013
Click here for an overview of all topics.
Topic ID Topic Keywords Topic Frequency Label
0 missiles - ukrainiennes - israe - militaires - armes 55292 0_missiles_ukrainiennes_israe_militaires
1 ukrainiennes - israe - ukraine - militaires - armes 12667 1_ukrainiennes_israe_ukraine_militaires
2 brainlesschanel - journe - douce - rockn - belle 31 2_brainlesschanel_journe_douce_rockn
3 brainlesschanel - cible - afrique - douce - norve 23 3_brainlesschanel_cible_afrique_douce

Training hyperparameters

  • calculate_probabilities: False
  • language: None
  • low_memory: False
  • min_topic_size: 10
  • n_gram_range: (1, 1)
  • nr_topics: None
  • seed_topic_list: None
  • top_n_words: 10
  • verbose: False
  • zeroshot_min_similarity: 0.7
  • zeroshot_topic_list: None

Framework versions

  • Numpy: 1.23.5
  • HDBSCAN: 0.8.38.post1
  • UMAP: 0.5.6
  • Pandas: 2.2.2
  • Scikit-Learn: 1.5.1
  • Sentence-transformers: 3.0.1
  • Transformers: 4.44.2
  • Numba: 0.60.0
  • Plotly: 5.24.0
  • Python: 3.10.12
Downloads last month
1
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.