Introduction

spaCy NER model for Spanish trained with interviews in the domain of tourism related to the Way of Saint Jacques. It recognizes four types of entities: location (LOC), organizations (ORG), person (PER) and miscellaneous (MISC).

Feature Description
Name es_spacy_ner_cds
Version 0.0.1a
spaCy >=3.4.3,<3.5.0
Default Pipeline tok2vec, ner
Components tok2vec, ner

Label Scheme

View label scheme (4 labels for 1 components)
Component Labels
ner LOC, MISC, ORG, PER

Usage

You can use this model with the spaCy pipeline for NER.

import spacy
from spacy.pipeline import merge_entities


nlp = spacy.load("es_spacy_ner_cds")
nlp.add_pipe('sentencizer')

example = "Fue antes de llegar a Sigüeiro, en el Camino de Santiago. El proyecto lo financia el Ministerio de Industria y Competitividad."
ner_pipe = nlp(example)

print(ner_pipe.ents)
for token in merge_entities(ner_pipe):
    print(token.text, token.ent_type_)

Dataset

ToDo

Accuracy

Type Score
ENTS_F 96.26
ENTS_P 96.49
ENTS_R 96.04
TOK2VEC_LOSS 62780.17
NER_LOSS 34006.41
Downloads last month
4
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results