Edit model card

Baichuan2-7B-Chat-GGUF

Original Model

baichuan-inc/Baichuan2-7B-Chat

Run with LlamaEdge

  • LlamaEdge version: v0.2.8 and above

  • Prompt template

    • Prompt type: baichuan-2

    • Prompt string

      以下内容为人类用户与与一位智能助手的对话。
      
      用户:你好!
      助手:
      
    • Reverse prompt: 用户:

  • Context size: 4096

  • Run as LlamaEdge service

    wasmedge --dir .:. --nn-preload default:GGML:AUTO:Baichuan2-7B-Chat-Q5_K_M.gguf llama-api-server.wasm -p baichuan-2 -r '用户:'
    
  • Run as LlamaEdge command app

    wasmedge --dir .:. --nn-preload default:GGML:AUTO:Baichuan2-7B-Chat-Q5_K_M.gguf llama-chat.wasm -p baichuan-2 -r '用户:'
    

Quantized GGUF Models

Name Quant method Bits Size Use case
Baichuan2-7B-Chat-Q2_K.gguf Q2_K 2 3.27 GB smallest, significant quality loss - not recommended for most purposes
Baichuan2-7B-Chat-Q3_K_L.gguf Q3_K_L 3 4.08 GB small, substantial quality loss
Baichuan2-7B-Chat-Q3_K_M.gguf Q3_K_M 3 3.78 GB very small, high quality loss
Baichuan2-7B-Chat-Q3_K_S.gguf Q3_K_S 3 3.43 GB very small, high quality loss
Baichuan2-7B-Chat-Q4_0.gguf Q4_0 4 4.36 GB legacy; small, very high quality loss - prefer using Q3_K_M
Baichuan2-7B-Chat-Q4_K_M.gguf Q4_K_M 4 4.61 GB medium, balanced quality - recommended
Baichuan2-7B-Chat-Q4_K_S.gguf Q4_K_S 4 4.39 GB small, greater quality loss
Baichuan2-7B-Chat-Q5_0.gguf Q5_0 5 5.23 GB legacy; medium, balanced quality - prefer using Q4_K_M
Baichuan2-7B-Chat-Q5_K_M.gguf Q5_K_M 5 5.36 GB large, very low quality loss - recommended
Baichuan2-7B-Chat-Q5_K_S.gguf Q5_K_S 5 5.23 GB large, low quality loss - recommended
Baichuan2-7B-Chat-Q6_K.gguf Q6_K 6 6.16 GB very large, extremely low quality loss
Baichuan2-7B-Chat-Q8_0.gguf Q8_0 8 7.98 GB very large, extremely low quality loss - not recommended
Downloads last month
127
GGUF
Model size
7.51B params
Architecture
baichuan

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

Inference Examples
Inference API (serverless) has been turned off for this model.

Model tree for second-state/Baichuan2-7B-Chat-GGUF

Quantized
(16)
this model