Edit model card

FinGPT-MT-Llama-3-8B-LoRA-GGUF

Original Model

meta-llama/Meta-Llama-3-8B

LoRA Adapter

FinGPT/fingpt-mt_llama3-8b_lora

Run with LlamaEdge

  • LlamaEdge version: coming soon
  • Context size: 8192

Quantized GGUF Models

Name Quant method Bits Size Use case
FinGPT-MT-Llama-3-8B-LoRA-Q2_K.gguf Q2_K 2 3.18 GB smallest, significant quality loss - not recommended for most purposes
FinGPT-MT-Llama-3-8B-LoRA-Q3_K_L.gguf Q3_K_L 3 4.32 GB small, substantial quality loss
FinGPT-MT-Llama-3-8B-LoRA-Q3_K_M.gguf Q3_K_M 3 4.02 GB very small, high quality loss
FinGPT-MT-Llama-3-8B-LoRA-Q3_K_S.gguf Q3_K_S 3 3.66 GB very small, high quality loss
FinGPT-MT-Llama-3-8B-LoRA-Q4_0.gguf Q4_0 4 4.66 GB legacy; small, very high quality loss - prefer using Q3_K_M
FinGPT-MT-Llama-3-8B-LoRA-Q4_K_M.gguf Q4_K_M 4 4.92 GB medium, balanced quality - recommended
FinGPT-MT-Llama-3-8B-LoRA-Q4_K_S.gguf Q4_K_S 4 4.69 GB small, greater quality loss
FinGPT-MT-Llama-3-8B-LoRA-Q5_0.gguf Q5_0 5 5.6 GB legacy; medium, balanced quality - prefer using Q4_K_M
FinGPT-MT-Llama-3-8B-LoRA-Q5_K_M.gguf Q5_K_M 5 5.73 GB large, very low quality loss - recommended
FinGPT-MT-Llama-3-8B-LoRA-Q5_K_S.gguf Q5_K_S 5 5.6 GB large, low quality loss - recommended
FinGPT-MT-Llama-3-8B-LoRA-Q6_K.gguf Q6_K 6 6.6 GB very large, extremely low quality loss
FinGPT-MT-Llama-3-8B-LoRA-Q8_0.gguf Q8_0 8 8.54 GB very large, extremely low quality loss - not recommended
FinGPT-MT-Llama-3-8B-LoRA-f16.gguf f16 16 16.1 GB

Quantized with llama.cpp b3807.

Downloads last month
563
GGUF
Model size
8.03B params
Architecture
llama

2-bit

3-bit

4-bit

5-bit

8-bit

16-bit

Inference Examples
Inference API (serverless) has been turned off for this model.

Model tree for second-state/FinGPT-MT-Llama-3-8B-LoRA-GGUF

Quantized
(234)
this model