Tool Use
Collection
LlamaEdge compatible quants for tool-use models.
•
11 items
•
Updated
LlamaEdge version: v0.12.4
Prompt template
Prompt type: groq-llama3-tool
Prompt string
<|start_header_id|>system<|end_header_id|>
You are a function calling AI model. You are provided with function signatures within <tools></tools> XML tags. You may call one or more functions to assist with the user query. Don't make assumptions about what values to plug into functions. For each function call return a json object with function name and arguments within <tool_call></tool_call> XML tags as follows:
<tool_call>
{"name": <function-name>,"arguments": <args-dict>}
</tool_call>
Here are the available tools:
<tools> {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA"
},
"unit": {
"type": "string",
"description": "The temperature unit to use. Infer this from the users location.",
"enum": [
"celsius",
"fahrenheit"
]
}
},
"required": [
"location",
"unit"
]
}
}
{
"name": "predict_weather",
"description": "Predict the weather in 24 hours",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA"
},
"unit": {
"type": "string",
"description": "The temperature unit to use. Infer this from the users location.",
"enum": [
"celsius",
"fahrenheit"
]
}
},
"required": [
"location",
"unit"
]
}
} </tools><|eot_id|><|start_header_id|>user<|end_header_id|>
What is the weather like in San Francisco in Celsius?<|eot_id|><|start_header_id|>assistant<|end_header_id|>
Context size: 8192
Run as LlamaEdge service
wasmedge --dir .:. --nn-preload default:GGML:AUTO:Llama-3-Groq-8B-Tool-Use-Q5_K_M.gguf \
llama-api-server.wasm \
--prompt-template groq-llama3-tool \
--ctx-size 8192 \
--model-name Llama-3-Groq-8B
Name | Quant method | Bits | Size | Use case |
---|---|---|---|---|
Llama-3-Groq-8B-Tool-Use-Q2_K.gguf | Q2_K | 2 | 3.18 GB | smallest, significant quality loss - not recommended for most purposes |
Llama-3-Groq-8B-Tool-Use-Q3_K_L.gguf | Q3_K_L | 3 | 4.32 GB | small, substantial quality loss |
Llama-3-Groq-8B-Tool-Use-Q3_K_M.gguf | Q3_K_M | 3 | 4.02 GB | very small, high quality loss |
Llama-3-Groq-8B-Tool-Use-Q3_K_S.gguf | Q3_K_S | 3 | 3.66 GB | very small, high quality loss |
Llama-3-Groq-8B-Tool-Use-Q4_0.gguf | Q4_0 | 4 | 4.66 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
Llama-3-Groq-8B-Tool-Use-Q4_K_M.gguf | Q4_K_M | 4 | 4.92 GB | medium, balanced quality - recommended |
Llama-3-Groq-8B-Tool-Use-Q4_K_S.gguf | Q4_K_S | 4 | 4.69 GB | small, greater quality loss |
Llama-3-Groq-8B-Tool-Use-Q5_0.gguf | Q5_0 | 5 | 5.60 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
Llama-3-Groq-8B-Tool-Use-Q5_K_M.gguf | Q5_K_M | 5 | 5.73 GB | large, very low quality loss - recommended |
Llama-3-Groq-8B-Tool-Use-Q5_K_S.gguf | Q5_K_S | 5 | 5.60 GB | large, low quality loss - recommended |
Llama-3-Groq-8B-Tool-Use-Q6_K.gguf | Q6_K | 6 | 6.60 GB | very large, extremely low quality loss |
Llama-3-Groq-8B-Tool-Use-Q8_0.gguf | Q8_0 | 8 | 8.54 GB | very large, extremely low quality loss - not recommended |
Llama-3-Groq-8B-Tool-Use-f16.gguf | f16 | 16 | 16.1 GB |
Quantized with llama.cpp b3405.
Base model
meta-llama/Meta-Llama-3-8B