Edit model card

image/png

OrpoGemma-2-9B-TR

OrpoGemma-2-9B-TR is a Turkish fine-tuned version of google/gemma-2-9b-it. It is trained using the ORPO Trainer on a subset of 1500 rows from the dataset selimc/orpo-dpo-mix-TR-20k.

Due to context size issues while training, the model underperforms and it will be fixed in v2.

Training Information

  • Base Model: google/gemma-2-9b-it

  • Fine-Tuning Technique: ORPO

  • Training Data: 1500 rows from selimc/orpo-dpo-mix-TR-20k

  • Training Time: 2.5 hours on NVIDIA H100

    QLoRA Configurations:

    • lora_r: 16
    • lora_alpha: 32
    • lora_dropout: 0.05

    ORPO Training Parameters

    • lr: 2e-6
    • epochs: 3
    • per_device_train_batch_size: 8
    • gradient_accumulation_steps: 4

📈 Training Curves

image/png

image/png

Model Capabilities

  • Produces fluent, coherent, and contextually appropriate text in Turkish.
  • Delivers detailed and informative responses to a wide range of instructions and question types.
  • May still produce incorrect or nonsensical outputs, user verification is recommended.

How to Use

from transformers import pipeline, BitsAndBytesConfig, AutoTokenizer
import torch

bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_use_double_quant=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=torch.bfloat16
)

model_id = "selimc/OrpoGemma-2-9B-TR"

tokenizer = AutoTokenizer.from_pretrained(model_id)

pipe = pipeline(
    "text-generation",
    model=model_id,
    model_kwargs={"torch_dtype": torch.bfloat16 ,'quantization_config': bnb_config},
    tokenizer=tokenizer,
    device_map="auto"
)

messages = [
    {"role": "user", "content": "Gökyüzü neden mavi?"},
]

prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)

outputs = pipe(
    prompt,
    max_new_tokens=512,
    do_sample=True,
    eos_token_id=[pipe.tokenizer.convert_tokens_to_ids("<end_of_turn>"), pipe.tokenizer.eos_token_id],
    temperature=0.67,
)

generated_text = outputs[0]['generated_text']
response = generated_text[len(prompt):]
print(response)

Example 1

messages = [
    {"role": "user", "content": """Bir web sayfasından tüm URL’leri çeken bir Python fonksiyonu yazın ve nasıl çalıştığını açıklayın."""},
]
Bir web sayfasından tüm URL’leri çeken bir Python fonksiyonu yazalım ve nasıl çalıştığını açıklayalım.

```python
import requests

def get_urls_from_page(url):
  """
  
  Bir web sayfasından tüm URL'leri çeker.

  Args:
      url (str): Web sayfasının URL'i.

  Returns:
      list: Web sayfasındaki tüm URL'ler.
  """
  response = requests.get(url)
  response.raise_for_status()

  urls = []
  for link in response.html.find_all('a', href=True):
    urls.append(link['href'])

  return urls

# Örnek kullanım

web_page_url = 'https://www.example.com/'
all_urls = get_urls_from_page(web_page_url)
print(f"Bu web sayfasındaki {len(all_urls)} URL bulunmaktadır:\n{all_urls}")
```

**Fonksiyonun nasıl çalıştığı:**

1. **`requests` kütüphanesini içer:** Bu kütüphane web sayfalarına erişmek için kullanılır.
2. **`get_urls_from_page` fonksiyonunu tanımla:** 
   * Bu fonksiyon, bir web sayfasının URL'ini alır.
   * `requests.get()` kullanarak web sayfasına erişir ve `response.raise_for_status()` kullanarak HTTP durum kodunun 200-399 aralığında olup olmadığını kontrol eder.
   * `response.html` içine bir HTML belgesini saklar.
   * `response.html.find_all('a', href=True)` kullanarak, `href` atributuna sahip tüm `<a>` etiketlerini bulur. 
   * `urls` listesine URL'leri ekler.
   * `urls` listesini döndürür.

3. **Örnek kullanım:**

   * `web_page_url` değişkenine bir web sayfasının URL'ini atar.
   * `get_urls_from_page` fonksiyonunu kullanarak web sayfasından tüm URL'leri çeker.
   * `all_urls` listesini `print()` fonksiyonu kullanarak ekrana yazdır

Example 2

messages = [
    {
        "role": "system",
        "content":
          """
          Sen bir türkçe bilmece ustasısın. Görevin:
            - Sorulan bilmecelere mantıklı ve doğru cevaplar vermek
            - Bilmecenin çözümünü adım adım açıklamak
          """
    },
    {
        "role": "user",
        "content":
          """
            Kanadı var, kuş değil.
            Suda yüzer, gemi değil.
            Kuyruğu var, kedi değil.
            Bil bakalım, bu nedir?
          """
    },
]
Kanadı var, kuş değil, suda yüzer, gemi değil, kuyruğu var, kedi değil... Bu bir **balık**! 🐟
Downloads last month
482
Safetensors
Model size
9.24B params
Tensor type
FP16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for selimc/OrpoGemma-2-9B-TR

Base model

google/gemma-2-9b
Finetuned
(75)
this model
Quantizations
1 model

Dataset used to train selimc/OrpoGemma-2-9B-TR