Edit model card

distilbert_finetune_own_data_model

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0618
  • Precision: 0.8889
  • Recall: 0.8889
  • F1: 0.8889
  • Accuracy: 0.9773

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 23 0.3117 1.0 0.6667 0.8 0.9091
No log 2.0 46 0.1638 0.7778 0.7778 0.7778 0.9318
No log 3.0 69 0.1322 0.875 0.7778 0.8235 0.9545
No log 4.0 92 0.0582 0.8889 0.8889 0.8889 0.9773
No log 5.0 115 0.1196 0.8889 0.8889 0.8889 0.9773
No log 6.0 138 0.0607 0.8889 0.8889 0.8889 0.9773
No log 7.0 161 0.0918 0.8889 0.8889 0.8889 0.9773
No log 8.0 184 0.0512 0.8889 0.8889 0.8889 0.9773
No log 9.0 207 0.0521 0.8889 0.8889 0.8889 0.9773
No log 10.0 230 0.0618 0.8889 0.8889 0.8889 0.9773

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
10
Safetensors
Model size
66.4M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for senthil2002/distilbert_finetune_own_data_model

Finetuned
(6787)
this model