File size: 7,001 Bytes
25474af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15a3a2c
 
 
 
 
25474af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15a3a2c
6a72422
 
25474af
 
 
4f61406
25474af
 
 
8a89bea
 
15a3a2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25474af
 
 
 
fe015c2
25474af
fe015c2
25474af
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: distilbert_finetune_own_data_model
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilbert_finetune_own_data_model

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2715
- Precision: 0.8333
- Recall: 0.8333
- F1: 0.8333
- Accuracy: 0.9483

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 60

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log        | 1.0   | 7    | 0.6895          | 0.0       | 0.0    | 0.0    | 0.7241   |
| No log        | 2.0   | 14   | 0.5915          | 0.0       | 0.0    | 0.0    | 0.7241   |
| No log        | 3.0   | 21   | 0.4062          | 0.2       | 0.0833 | 0.1176 | 0.7759   |
| No log        | 4.0   | 28   | 0.3063          | 0.5       | 0.5833 | 0.5385 | 0.8966   |
| No log        | 5.0   | 35   | 0.2520          | 0.5333    | 0.6667 | 0.5926 | 0.9138   |
| No log        | 6.0   | 42   | 0.2474          | 0.6667    | 0.6667 | 0.6667 | 0.9310   |
| No log        | 7.0   | 49   | 0.2140          | 0.6923    | 0.75   | 0.7200 | 0.9483   |
| No log        | 8.0   | 56   | 0.1894          | 0.8333    | 0.8333 | 0.8333 | 0.9655   |
| No log        | 9.0   | 63   | 0.1890          | 0.8333    | 0.8333 | 0.8333 | 0.9655   |
| No log        | 10.0  | 70   | 0.2119          | 0.8182    | 0.75   | 0.7826 | 0.9483   |
| No log        | 11.0  | 77   | 0.2343          | 0.8182    | 0.75   | 0.7826 | 0.9483   |
| No log        | 12.0  | 84   | 0.2421          | 0.8182    | 0.75   | 0.7826 | 0.9483   |
| No log        | 13.0  | 91   | 0.2379          | 0.8182    | 0.75   | 0.7826 | 0.9483   |
| No log        | 14.0  | 98   | 0.2362          | 0.8182    | 0.75   | 0.7826 | 0.9483   |
| No log        | 15.0  | 105  | 0.2357          | 0.8182    | 0.75   | 0.7826 | 0.9483   |
| No log        | 16.0  | 112  | 0.2370          | 0.8182    | 0.75   | 0.7826 | 0.9483   |
| No log        | 17.0  | 119  | 0.2383          | 0.8182    | 0.75   | 0.7826 | 0.9483   |
| No log        | 18.0  | 126  | 0.2400          | 0.8182    | 0.75   | 0.7826 | 0.9483   |
| No log        | 19.0  | 133  | 0.2424          | 0.8182    | 0.75   | 0.7826 | 0.9483   |
| No log        | 20.0  | 140  | 0.2444          | 0.8182    | 0.75   | 0.7826 | 0.9483   |
| No log        | 21.0  | 147  | 0.2461          | 0.8333    | 0.8333 | 0.8333 | 0.9655   |
| No log        | 22.0  | 154  | 0.2481          | 0.8333    | 0.8333 | 0.8333 | 0.9655   |
| No log        | 23.0  | 161  | 0.2422          | 0.8333    | 0.8333 | 0.8333 | 0.9655   |
| No log        | 24.0  | 168  | 0.2408          | 0.8333    | 0.8333 | 0.8333 | 0.9655   |
| No log        | 25.0  | 175  | 0.2418          | 0.8333    | 0.8333 | 0.8333 | 0.9655   |
| No log        | 26.0  | 182  | 0.2444          | 0.8333    | 0.8333 | 0.8333 | 0.9655   |
| No log        | 27.0  | 189  | 0.2477          | 0.8333    | 0.8333 | 0.8333 | 0.9483   |
| No log        | 28.0  | 196  | 0.2504          | 0.8333    | 0.8333 | 0.8333 | 0.9483   |
| No log        | 29.0  | 203  | 0.2527          | 0.8333    | 0.8333 | 0.8333 | 0.9483   |
| No log        | 30.0  | 210  | 0.2545          | 0.8333    | 0.8333 | 0.8333 | 0.9483   |
| No log        | 31.0  | 217  | 0.2561          | 0.8333    | 0.8333 | 0.8333 | 0.9483   |
| No log        | 32.0  | 224  | 0.2572          | 0.8333    | 0.8333 | 0.8333 | 0.9483   |
| No log        | 33.0  | 231  | 0.2584          | 0.8333    | 0.8333 | 0.8333 | 0.9483   |
| No log        | 34.0  | 238  | 0.2596          | 0.8333    | 0.8333 | 0.8333 | 0.9483   |
| No log        | 35.0  | 245  | 0.2606          | 0.8333    | 0.8333 | 0.8333 | 0.9483   |
| No log        | 36.0  | 252  | 0.2613          | 0.8333    | 0.8333 | 0.8333 | 0.9483   |
| No log        | 37.0  | 259  | 0.2621          | 0.8333    | 0.8333 | 0.8333 | 0.9483   |
| No log        | 38.0  | 266  | 0.2629          | 0.8333    | 0.8333 | 0.8333 | 0.9483   |
| No log        | 39.0  | 273  | 0.2638          | 0.8333    | 0.8333 | 0.8333 | 0.9483   |
| No log        | 40.0  | 280  | 0.2645          | 0.8333    | 0.8333 | 0.8333 | 0.9483   |
| No log        | 41.0  | 287  | 0.2652          | 0.8333    | 0.8333 | 0.8333 | 0.9483   |
| No log        | 42.0  | 294  | 0.2659          | 0.8333    | 0.8333 | 0.8333 | 0.9483   |
| No log        | 43.0  | 301  | 0.2666          | 0.8333    | 0.8333 | 0.8333 | 0.9483   |
| No log        | 44.0  | 308  | 0.2672          | 0.8333    | 0.8333 | 0.8333 | 0.9483   |
| No log        | 45.0  | 315  | 0.2678          | 0.8333    | 0.8333 | 0.8333 | 0.9483   |
| No log        | 46.0  | 322  | 0.2683          | 0.8333    | 0.8333 | 0.8333 | 0.9483   |
| No log        | 47.0  | 329  | 0.2686          | 0.8333    | 0.8333 | 0.8333 | 0.9483   |
| No log        | 48.0  | 336  | 0.2689          | 0.8333    | 0.8333 | 0.8333 | 0.9483   |
| No log        | 49.0  | 343  | 0.2693          | 0.8333    | 0.8333 | 0.8333 | 0.9483   |
| No log        | 50.0  | 350  | 0.2697          | 0.8333    | 0.8333 | 0.8333 | 0.9483   |
| No log        | 51.0  | 357  | 0.2699          | 0.8333    | 0.8333 | 0.8333 | 0.9483   |
| No log        | 52.0  | 364  | 0.2702          | 0.8333    | 0.8333 | 0.8333 | 0.9483   |
| No log        | 53.0  | 371  | 0.2705          | 0.8333    | 0.8333 | 0.8333 | 0.9483   |
| No log        | 54.0  | 378  | 0.2708          | 0.8333    | 0.8333 | 0.8333 | 0.9483   |
| No log        | 55.0  | 385  | 0.2710          | 0.8333    | 0.8333 | 0.8333 | 0.9483   |
| No log        | 56.0  | 392  | 0.2711          | 0.8333    | 0.8333 | 0.8333 | 0.9483   |
| No log        | 57.0  | 399  | 0.2713          | 0.8333    | 0.8333 | 0.8333 | 0.9483   |
| No log        | 58.0  | 406  | 0.2714          | 0.8333    | 0.8333 | 0.8333 | 0.9483   |
| No log        | 59.0  | 413  | 0.2715          | 0.8333    | 0.8333 | 0.8333 | 0.9483   |
| No log        | 60.0  | 420  | 0.2715          | 0.8333    | 0.8333 | 0.8333 | 0.9483   |


### Framework versions

- Transformers 4.38.2
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2