Edit model card

flant5_sum_samsum

This model is a fine-tuned version of google/flan-t5-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: nan
  • Gen Len: 16.6760
  • Rouge Score: {'rouge1': 0.4648609117501229, 'rouge2': 0.23489748856950105, 'rougeL': 0.3936027885754436, 'rougeLsum': 0.3932448622689456}
  • Bleu Score: {'bleu': 0.12048170853922512, 'precisions': [0.5838656689176857, 0.28994082840236685, 0.17667882428663376, 0.11335841956726246], 'brevity_penalty': 0.49929356415876747, 'length_ratio': 0.5901233238192687, 'translation_length': 10958, 'reference_length': 18569}
  • Bleurt Score: -0.4863
  • Bert Score: [0.9187235832214355, 0.9003126621246338, 0.9092234373092651]

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Gen Len Rouge Score Bleu Score Bleurt Score Bert Score
0.0 1.0 921 nan 16.6760 {'rouge1': 0.4648609117501229, 'rouge2': 0.23489748856950105, 'rougeL': 0.3936027885754436, 'rougeLsum': 0.3932448622689456} {'bleu': 0.12048170853922512, 'precisions': [0.5838656689176857, 0.28994082840236685, 0.17667882428663376, 0.11335841956726246], 'brevity_penalty': 0.49929356415876747, 'length_ratio': 0.5901233238192687, 'translation_length': 10958, 'reference_length': 18569} -0.4863 [0.9187235832214355, 0.9003126621246338, 0.9092234373092651]
0.0 2.0 1842 nan 16.6760 {'rouge1': 0.4648609117501229, 'rouge2': 0.23489748856950105, 'rougeL': 0.3936027885754436, 'rougeLsum': 0.3932448622689456} {'bleu': 0.12048170853922512, 'precisions': [0.5838656689176857, 0.28994082840236685, 0.17667882428663376, 0.11335841956726246], 'brevity_penalty': 0.49929356415876747, 'length_ratio': 0.5901233238192687, 'translation_length': 10958, 'reference_length': 18569} -0.4863 [0.9187235832214355, 0.9003126621246338, 0.9092234373092651]
0.0 3.0 2763 nan 16.6760 {'rouge1': 0.4648609117501229, 'rouge2': 0.23489748856950105, 'rougeL': 0.3936027885754436, 'rougeLsum': 0.3932448622689456} {'bleu': 0.12048170853922512, 'precisions': [0.5838656689176857, 0.28994082840236685, 0.17667882428663376, 0.11335841956726246], 'brevity_penalty': 0.49929356415876747, 'length_ratio': 0.5901233238192687, 'translation_length': 10958, 'reference_length': 18569} -0.4863 [0.9187235832214355, 0.9003126621246338, 0.9092234373092651]
0.0 4.0 3684 nan 16.6760 {'rouge1': 0.4648609117501229, 'rouge2': 0.23489748856950105, 'rougeL': 0.3936027885754436, 'rougeLsum': 0.3932448622689456} {'bleu': 0.12048170853922512, 'precisions': [0.5838656689176857, 0.28994082840236685, 0.17667882428663376, 0.11335841956726246], 'brevity_penalty': 0.49929356415876747, 'length_ratio': 0.5901233238192687, 'translation_length': 10958, 'reference_length': 18569} -0.4863 [0.9187235832214355, 0.9003126621246338, 0.9092234373092651]
0.0 5.0 4605 nan 16.6760 {'rouge1': 0.4648609117501229, 'rouge2': 0.23489748856950105, 'rougeL': 0.3936027885754436, 'rougeLsum': 0.3932448622689456} {'bleu': 0.12048170853922512, 'precisions': [0.5838656689176857, 0.28994082840236685, 0.17667882428663376, 0.11335841956726246], 'brevity_penalty': 0.49929356415876747, 'length_ratio': 0.5901233238192687, 'translation_length': 10958, 'reference_length': 18569} -0.4863 [0.9187235832214355, 0.9003126621246338, 0.9092234373092651]
0.0 6.0 5526 nan 16.6760 {'rouge1': 0.4648609117501229, 'rouge2': 0.23489748856950105, 'rougeL': 0.3936027885754436, 'rougeLsum': 0.3932448622689456} {'bleu': 0.12048170853922512, 'precisions': [0.5838656689176857, 0.28994082840236685, 0.17667882428663376, 0.11335841956726246], 'brevity_penalty': 0.49929356415876747, 'length_ratio': 0.5901233238192687, 'translation_length': 10958, 'reference_length': 18569} -0.4863 [0.9187235832214355, 0.9003126621246338, 0.9092234373092651]
0.0 7.0 6447 nan 16.6760 {'rouge1': 0.4648609117501229, 'rouge2': 0.23489748856950105, 'rougeL': 0.3936027885754436, 'rougeLsum': 0.3932448622689456} {'bleu': 0.12048170853922512, 'precisions': [0.5838656689176857, 0.28994082840236685, 0.17667882428663376, 0.11335841956726246], 'brevity_penalty': 0.49929356415876747, 'length_ratio': 0.5901233238192687, 'translation_length': 10958, 'reference_length': 18569} -0.4863 [0.9187235832214355, 0.9003126621246338, 0.9092234373092651]
0.0 8.0 7368 nan 16.6760 {'rouge1': 0.4648609117501229, 'rouge2': 0.23489748856950105, 'rougeL': 0.3936027885754436, 'rougeLsum': 0.3932448622689456} {'bleu': 0.12048170853922512, 'precisions': [0.5838656689176857, 0.28994082840236685, 0.17667882428663376, 0.11335841956726246], 'brevity_penalty': 0.49929356415876747, 'length_ratio': 0.5901233238192687, 'translation_length': 10958, 'reference_length': 18569} -0.4863 [0.9187235832214355, 0.9003126621246338, 0.9092234373092651]
0.0 9.0 8289 nan 16.6760 {'rouge1': 0.4648609117501229, 'rouge2': 0.23489748856950105, 'rougeL': 0.3936027885754436, 'rougeLsum': 0.3932448622689456} {'bleu': 0.12048170853922512, 'precisions': [0.5838656689176857, 0.28994082840236685, 0.17667882428663376, 0.11335841956726246], 'brevity_penalty': 0.49929356415876747, 'length_ratio': 0.5901233238192687, 'translation_length': 10958, 'reference_length': 18569} -0.4863 [0.9187235832214355, 0.9003126621246338, 0.9092234373092651]
0.0 10.0 9210 nan 16.6760 {'rouge1': 0.4648609117501229, 'rouge2': 0.23489748856950105, 'rougeL': 0.3936027885754436, 'rougeLsum': 0.3932448622689456} {'bleu': 0.12048170853922512, 'precisions': [0.5838656689176857, 0.28994082840236685, 0.17667882428663376, 0.11335841956726246], 'brevity_penalty': 0.49929356415876747, 'length_ratio': 0.5901233238192687, 'translation_length': 10958, 'reference_length': 18569} -0.4863 [0.9187235832214355, 0.9003126621246338, 0.9092234373092651]

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.10.0
  • Tokenizers 0.13.3
Downloads last month
7
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for sentientconch/flant5_sum_samsum

Finetuned
(643)
this model