from transformers import BartTokenizer, BartForConditionalGeneration, BartConfig
model = BartForConditionalGeneration.from_pretrained('shahrukhx01/schema-aware-distilbart-cnn-12-6-text2sql')
tokenizer = BartTokenizer.from_pretrained('shahrukhx01/schema-aware-distilbart-cnn-12-6-text2sql')
## add NL query with table schema
question = "What is terrence ross' nationality? </s> <col0> Player : text <col1> No. : text <col2> Nationality : text <col3> Position : text <col4> Years in Toronto : text <col5> School/Club Team : text"
inputs = tokenizer([question], max_length=1024, return_tensors='pt')
# Generate SQL
text_query_ids = model.generate(inputs['input_ids'], num_beams=4, min_length=0, max_length=125, early_stopping=True)
prediction = [tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=False) for g in text_query_ids][0]
print(prediction)
- Downloads last month
- 194
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.